Lung tumors: early and delayed ratio of 99mTc-methoxy-2-isobutylisonitrile accumulation

Tumors pušća: rana i odložena akumulacija 99mTc-metoksi-2-izobutilizonitrila

Katarina Nikoletić*, Jasna Mihailović*, Dolores Srbovan*, Violeta Kolarov†, Radmila Žeravica‡

*Department of Nuclear Medicine, Institute of Oncology of Vojvodina, Sremska Kamenica, Serbia; †Department of General Pulmology, Institute of Pulmonary Diseases, Sremska Kamenica, Serbia; ‡Department of Nuclear Medicine, Clinical Center of Vojvodina, Novi Sad, Serbia

Abstract

Background/Aim. Currently used radiopharmaceuticals are nonspecific and most of them are accumulated by benign tumors as well as inflammatory lesions, abscess or granulomatous lesions. Some factors such as the choice of radiopharmaceutical applied, histopathologic type of tumor, its size, location or previous tumor treatment could influence tumor imaging sensitivity. The aim of this study was to investigate accumulation of 99mTc-methoxy-2-isobutylisonitrile (99mTc-MIBI) by counting early/delayed uptake and release of this radiopharmaceutical inside lung tumors and evaluating possible factors which could be involved in its accumulation.

Methods. Two-phase 99mTc-methoxy-2-isobutylisonitrile single photon emission computed tomography scan (early and delayed scan) was performed in 60 patients with lung tumors (the group 1 – 30 benign, and the group 2 – 30 malignant tumors). We calculated the uptake ratio on early (early ratio – ER), delayed images (delayed ratio – DR) and retention index (RI). Individual influence of etiology, diameter, localization, and histological type on uptake/release values was evaluated with regression analysis. Results. The values of ER and DR were significantly different in both groups ($p < 0.01$), showing lower values in benign vs malignant lung tumors (ER 1.36 ± 0.094 and DR 1.25 ± 0.089 vs ER 1.93 ± 0.106 and DR 1.7 ± 0.095 respectively). Tumor size showed a significant influence on the change of ER and DR values ($p < 0.01$), with greater uptake in tumors $> 3 \text{ cm}$. RI values showed no significance between the two groups ($p > 0.05$). Conclusion. The uptake ratio of 99mTc-methoxy-2-isobutylisonitrile could be a useful index in differentiating lung tumors, while RI has no influence on this. Among the evaluated factors, ER and DR values are significantly influenced only by the diameter of lung tumor, while localization or different histological types between the groups has no influence on this.

Key words: radiopharmaceuticals; tomography, emission-computed; lung neoplasms; diagnosis, differential; pathology; sensitivity and specificity.

Notes

*Correspondence to: Katarina Nikoletić, Department of Nuclear Medicine, Institute of Oncology of Vojvodina, 21 204 Sremska Kamenica, Srbija. Phone: +381 63 520 085, +381 21 4805 458. E-mail: ketimo@yahoo.com

Original Article

DOI: 10.2298/VSP120806052N
Introduction

Tumor imaging with various radiopharmaceuticals has been a focal point for nuclear medicine researchers. Currently used radiopharmaceuticals are nonspecific and most of them are also accumulated by benign tumors and infectious lesions, such as inflammatory lesions, abscess or granulomatous lesions. Some factors such as the choice of radiopharmaceutical applied, histopathologic type of tumor, its size, location or previous tumor treatment could influence sensitivity of tumor imaging.

Commonly used radiopharmaceuticals in lung cancer imaging are 201Tl-chloride (talbum-201 chloride) and 99mTc-MIBI (technetium-99m labelled hexakis-2-methoxyisobutylisonitrile) 1-3. New studies introduce simultaneous double-tracer single photon emission tomography (SPECT) with 99mTc-Techetechnretil and 67-Ga-citrate for follow-up of patients with non-small cell lung cancer 4. Studies in vitro in cultured tumor cells found out that the uptake of 201Tl is almost 3-fold greater than 99mTc-MIBI, while the cellular release or the washout rate is almost identical for both radiopharmaceuticals 5. Kinetics of some radiopharmaceuticals can be changed by adding certain drugs such as actinomycin D resulting in increased cellular release of 201Tl while it has no change in washout rate of 99mTc-MIBI 6. Slower washout of 201Tl in high growth cells enables this tracer to act as an indicator of tumor malignancy. Some papers have reported the benefit of 201Tl-chloride in detecting tumor malignancies which is determined by the grade of washout rate to normal tissue especially in lung cancer lesions and metastatic malignancies which is determined by the grade of washout rate 7. Some factors such as the choice of radiopharmaceutical applied, histopathologic type of tumor, its size, location or previous tumor treatment could influence sensitivity of tumor imaging.

Two-phase (early and delayed) 99mTc-MIBI SPECT imaging was performed prior to definitive diagnosis. Early 99mTc-MIBI imaging was performed 10 minutes after the intravenous injection of 740 MBq 99mTc-MIBI with dual-headed gamma-camera equipped with low-energy, high resolution collimator. Delayed imaging was done 60-120 minutes after the intravenous injection of the radiopharmaceutical. 99mTc-MIBI was prepared according to the instructions of the manufacturer. The images were acquired every 20 seconds, at the angle of 3º, in a circular orbit of 180º per detector array, and stored in 64 × 64 matrix. The equipment was calibrated for a photopeak of 140 keV with a symmetric 20% window. The images were reconstructed in the coronal, transversal and sagital sections and both early and delayed images were evaluated qualitatively considering positive findings if there was an increased accumulation of the radiopharmaceutical in the lung area corresponding to the location of the LLs.

Visual evaluation of 99mTc-MIBI accumulation included evaluation of the uptake ratio on early (ER = early ratio) and delayed images (DR = delayed ratio) calculated on transverse slices placing region of interest (ROI) around abnormal uptake of 99mTc-MIBI (T = tumor) and in an area of contralateral normal (N = normal) lung tissue (ER or DR = T/N). The ROIs of the early images were copied and set on LLs on delayed images. For semiquantitative evaluation of the degree of retention in LLs the retention index (RI) was calculated as:

\[RI = \frac{[(\text{delayed ratio} - \text{early ratio}) / \text{early ratio}] \times 100}{\text{early ratio}} \]

To test the differences between ER, DR and RI in benign (group 1) and malignant (group 2) LLs, Student’s t-test was used. The results were considered significant when the p-value was less than 0.05. Mutual and individual influence of diameter, localization, and histological type of LLs on uptake values (ER, DR, RI) and on 99mTc-MIBI accumulation was analyzed with regression analysis.

Methods

A total of 60 patients with lung lesions (LLs) was evaluated from 2006 to 2009 (45 males and 15 females, age 37-76 years, mean age ± SD: 56.70 ± 9.527 years). All the patients were divided into 2 groups: the group 1 included 30 patients with benign LLs, and the group 2 included 30 patients with malignant solitary pulmonary nodule (SPN). This study included only the patients who had been evaluated by chest computed tomography (CT) (reporting diameter and localization of LLs) prior to 99mTc-MIBI scanning and with the final diagnosis. The diagnosis was made by pathohistology findings after surgery (49/60 or 81.7%), cytological findings of sputum or by positive TBC culture (4/60 or 6.7%) or by clinical course of the disease (7/60 or 11.6%).

Two-phase (early and delayed) 99mTc-MIBI SPECT imaging was performed prior to definitive diagnosis. Early 99mTc-MIBI imaging was performed 10 minutes after the intravenous injection of 740 MBq 99mTc-MIBI with dual-headed gamma-camera equipped with low-energy, high resolution collimator. Delayed imaging was done 60-120 minutes after the intravenous injection of the radiopharmaceutical. 99mTc-MIBI was prepared according to the instructions of the manufacturer. The images were acquired every 20 seconds, at the angle of 3º, in a circular orbit of 180º per detector array, and stored in 64 × 64 matrix. The equipment was calibrated for a photopeak of 140 keV with a symmetric 20% window. The images were reconstructed in the coronal, transversal and sagital sections and both early and delayed images were evaluated qualitatively considering positive findings if there was an increased accumulation of the radiopharmaceutical in the lung area corresponding to the location of the LLs.

Quantification of the images included evaluation of the uptake ratio on early (ER = early ratio) and delayed images (DR = delayed ratio) calculated on transverse slices placing region of interest (ROI) around abnormal uptake of 99mTc-MIBI (T = tumor) and in an area of contralateral normal (N = normal) lung tissue (ER or DR = T/N). The ROIs of the early images were copied and set on LLs on delayed images. For semiquantitative evaluation of the degree of retention in LLs the retention index (RI) was calculated as:

\[RI = \frac{[(\text{delayed ratio} - \text{early ratio}) / \text{early ratio}] \times 100}{\text{early ratio}} \]

To test the differences between ER, DR and RI in benign (group 1) and malignant (group 2) LLs, Student’s t-test was used. The results were considered significant when the p-value was less than 0.05. Mutual and individual influence of diameter, localization, and histological type of LLs on uptake values (ER, DR, RI) and on 99mTc-MIBI accumulation was analyzed with regression analysis.

Visual evaluation of 99mTc-MIBI accumulation included positive and negative findings assessment on early and delayed images in both groups of patients. In the group 1, 23 (76.7 %) of the patients were negative on both early and delayed images: 8 inflammatory pseudonodules, 7 cases of tuberculosis, 6 haemorrhata, 1 primary neuroendocrine cyst and 1 fibrotic nodule. The majority of false positive results in the group 1 (7/30 or 23.3%) occurred in inflammatory pseudonodule and only one was the case of botryomyocosis (Figure 1).

Most of lung lesions from the group 2 were positive on both early and delayed images (27/30 or 90%): 9 adenocarcinoma, 13 squamous-cell carcinoma, 3 large-cell carcinoma and 2 small-cell carcinoma (Figure 2).
Fig. 1 – A 70-year-old patient with a lung lesion located in the left lower lobe identified on X-ray and computed tomography (CT) scan (a, b). 99mTc-metoxo-2-isobutylisonitrile single photon emission computed tomography (99mTc-MIBI SPECT) scan in the same patient shows intense accumulation of 99mTc-MIBI in the lung region corresponding to the location of the nodule (c, d); the tumor/nodule (T/N) ratio was 2.79 on early scan. Percutaneous transthoracic fine needle aspiration cytology identified lesion as chronic pneumonia – a false positive result.

Fig. 2 – A 53-year-old patient with a lung lesion located in the right lung identified on radiography and computed tomography (CT) scan (a, b). 99mTc-metoxo-2-isobutylisonitrile single photon emission computed tomography (99mTc-MIBI SPECT) scan in the same patient shows high accumulation of 99mTc-MIBI in the lung region corresponding to the location of the nodule (c, d); the tumor/nodule (T/N) ratio was 2.24 on early scan. After lobectomy, the lesion was identified as squamous-cell carcinoma – a true positive result.

Only 3 lesions from this group did not accumulate the radiopharmaceutical (false negative): 1 adenocarcinoma (Figure 3), 1 undifferentiated squamous-cell carcinoma and 1 small-cell carcinoma. The difference in ER values between groups was statistically significant ($t = 3.982, p < 0.05$).

Also, the difference in DR values between groups was statistically significant ($t = 3.448, p < 0.05$).

In both groups, the values of ER, DR and RI were evaluated. The mean ER and DR values ± SD are shown in Figures 4 and 5.

The difference in ER values between groups was statistically significant ($t = 3.982, p < 0.05$).

Also, the difference in DR values between groups was statistically significant ($t = 3.448, p < 0.05$).

There was no significant difference between the RI values in benign and malignant SPN (-7.512 ± 10.44 and -11.394 ± 5.945, respectively) (Figure 6).

Fig. 3 – A 51-year-old patient with a lung lesion located in the left upper lobe identified on radiography and computed tomography (CT) scan (a, b). 99mTc-metoxi-2-isobutylisonitrile single photon emission computed tomography (99mTc-MIBI SPECT) scan in the same patient shows no accumulation of 99mTc-MIBI in the lung region corresponding to the location of the nodule (c, d); the tumor/nodule (T/N) ratio was 1.10 on early scan. Percutaneous transthoracic fine needle aspiration cytology and sputum cytology identified lesion as adenocarcinoma – a false negative result.

Fig. 4 – Early ratio (ER) values in the patients with benign (the group 1) and malignant (the group 2) lung lesions. 95% CI – 95% confidence interval.

Fig. 5 – Delayed ratio (DR) values in the patients with benign (the group 1) and malignant (the group 2) lung lesion. 95% CI – 95% confidence interval.

Among the false positive results in the group 1 (7 patients with a benign lung lesions), 5 cases of inflammatory pseudonodule showed washout of the tracer on delayed images. No washout of the tracer was noticed in 2 cases of benign lung lesions (1 botryomycosis and 1 inflammatory pseudonodule) with high values of RI (24.6 and 10.8, respectively).

All the true positive malignant lung lesions (27/30) showed washout of the tracer on delayed images. A highest difference between early and delayed ratio was noticed among adenocarcinomas and smallest difference among small-cell carcinomas. Two cases of adenocarcinoma had the highest values of ER in the group 2 (ER = 2.9 and ER = 3.0), but there was no significant difference in the ER values among the different histopathological types in the group (p < 0.05).

In the group 1, according to histopathological type, false positive findings were registered in 7 cases of benign LLs (6 pneumonia and 1 botryomycosis) with high values of ER = 2.2 ± 0.4 and DR = 2.0 ± 0.5. Among the two different histopathological types of benign lung lesions leading to false positive findings, there was no significant difference in ER, DR and RI values. In the group 2, the lowest ER and DR values were found in large-cell carcinoma (1.7 ± 0.2 and 1.5 ± 0.2, respectively) followed by small-cell and squamous-cell carcinoma with almost identical results (Table 1).

Adenocarcinoma had the highest ER and DR values of all histopathological types (2.2 ± 0.7 and 1.9 ± 0.7, respectively). Among the 4 different histopathological types of lung carcinoma, there was no significant difference in ER, DR and RI values.

Considering the size, malignant lung lesions were divided into 3 groups (small: 0–1.9 cm; medium: 2.0–3.9 cm and large lesions: over 4 cm). The results showed that the values of both early and delayed ratio increased with the larger size (ER: small 1.5; medium: 1.9; large: 2.1 and DR: small 1.3; medium 1.7, and large 1.8). There was a significant difference in ER and DR values between smallest and medium or large lung lesions (p < 0.05). There was no significant difference in retention index values compared to size of lung lesion (Table 2).

Table 1

<table>
<thead>
<tr>
<th>HP type</th>
<th>mean ER ± SD</th>
<th>mean DR ± SD</th>
<th>mean RI ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenocarcinoma</td>
<td>2.2 ± 0.7</td>
<td>1.9 ± 0.7</td>
<td>-10.1 ± 4.7</td>
</tr>
<tr>
<td>Squamous-cell carcinoma</td>
<td>1.8 ± 0.5</td>
<td>1.6 ± 0.4</td>
<td>-1.2 ± 6.8</td>
</tr>
<tr>
<td>Large-cell carcinoma</td>
<td>1.7 ± 0.2</td>
<td>1.5 ± 0.2</td>
<td>-12.9 ± 3.9</td>
</tr>
<tr>
<td>Small-cell carcinoma</td>
<td>1.8 ± 0.6</td>
<td>1.6 ± 0.4</td>
<td>-10.8 ± 4.7</td>
</tr>
<tr>
<td>Benign lung lesions (false positive)</td>
<td>2.2 ± 0.4</td>
<td>2.0 ± 0.5</td>
<td>-8.5 ± 21.3</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Size (mm)</th>
<th>mean ER ± SD</th>
<th>mean DR ± SD</th>
<th>mean RI ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–19</td>
<td>1.5 ± 0.3</td>
<td>1.3 ± 0.3</td>
<td>-12.1 ± 4.6</td>
</tr>
<tr>
<td>20–39</td>
<td>1.9 ± 0.6</td>
<td>1.7 ± 0.5</td>
<td>-9.6 ± 5.6</td>
</tr>
<tr>
<td>> 40</td>
<td>2.1 ± 0.6</td>
<td>1.8 ± 0.5</td>
<td>-13.9 ± 6.7</td>
</tr>
</tbody>
</table>

The values of ER, DR and RI were analyzed for lung lesions in both groups considering its localization in the right or the left lung and its lobes. In the group 1, 17 lesions were found in the left (10 were located in the lower lobe, 7 in the upper lobe) and 13 in the right lung (7 in the lower lobe, 5 in the upper lobe and 1 in the middle lobe). Among the lung lesions in the group 2, 16 were located in the right (6 in the upper, 5 in the middle and 5 in the lower lobe), and 14 in the left lung (8 in the upper and 6 in the lower lobe). No significant difference was found in ER, DR and RI values between the group 1 and the group 2 considering localization of lung lesions.

Regression analysis was used to evaluate how size, localization, histopathological report, ER and DR values influence 99mTc-MIBI accumulation (dependent variable – 99mTc-MIBI accumulation). There was a significant influence of mutual factor such as size, localization, histopathological report, ER and DR values on 99mTc-MIBI accumulation (p <
The values of ER and DR were evaluated by mutual influence of the factors such as size, localization and histopathological report of lung lesions showing a significant influence of these factors on ER and DR values \((p < 0.05)\). ER value was explained with 29.5% \((R^2 = 0.295)\) change of these factors meaning that 29.5% ER values were dependant on these factors. At the same time, values of ER and DR were evaluated by individual influence of above factors, and the results showed that the size of lung lesions and histopathological report had significant influence on ER and DR values \((p < 0.05; R^2 = 0.185 \text{ and } R^2 = 0.137, \text{ respectively})\), while localization had no influence on ER or DR values (Figure 7).

![Fig. 7 – Early ratio (ER) values and size of lung lesion in the patients with benign (the group 1) and malignant (the group 2) lung lesion.](image-url)

Discussion

The uptake mechanism of \(^{99m}\text{Tc-MIBI}\) by tumor cells is not yet known but there are some possible factors influencing the uptake such as the amount of mitochondria in the cell, cell membrane potential, increased tumor blood flow and capillary permeability.\(^{1\text{9}}\) It is known that accumulation of \(^{99m}\text{Tc-MIBI}\) in the tumor cell is reversely proportional to the level of P-glycoprotein (Pgp), the protein responsible for the transport of many chemotherapeutic drugs, thus increased Pgp level in the tumor is related to the resistance of malignant tumor to chemotherapy \(^{17}\). Increased levels of Pgp were found in tumor biopsies from relapsing cancer patients. Accumulation of \(^{99m}\text{Tc-MIBI}\) in cells is inversely proportional to the level of Pgp. Functional imaging of tumors with \(^{99m}\text{Tc-MIBI}\) may provide important information about the Pgp status of tumors.\(^{18}\)

Our study on 60 patients with lung lesions resulted in a significant difference between ER and DR values of \(^{99m}\text{Tc-MIBI}\) accumulation in benign and malignant lesions showing increased values in carcinomas which could be explained with differences in mitochondrial cell amount between malignant and healthy cells, as it was reported that passive \(^{99m}\text{Tc-MIBI}\) uptake is dependent on negative potential of the cytoplasmatic and mitochondrial membrane of neoplastic cells, showing increased accumulation in cells with higher number of mitochondria \(^{19}\).

We found no significant difference in retention index values between the group 1 and the group 2. Therefore, the result suggests that the \(^{99m}\text{Tc-MIBI}\) uptake ratio is more useful as a parameter for either benign or malignant lung lesion than values of RI. Our results are confirmed with previously reported in *vitro* studies with Hela cells where washout rate of \(^{99m}\text{Tc-MIBI}\) from cultured cells was not related to their malignant potential \(^{3}\). Nishiyama et al.\(^{20}\) agree with the conclusion that there is no significant tumor washout of \(^{99m}\text{Tc-MIBI}\) from the tumor mass according to RI values. Concurrently, some papers report no significant difference in ER and DR values or RI of \(^{99m}\text{Tc-MIBI}\) between benign and malignant lung lesions \(^{21}\).

In our study, ER and DR values were greater in malignant than in benign lesions of the lung (1.4-fold greater and 1.36-fold greater, respectively) which is the case in numerous studies \(^{13, 22, 23}\). Hassan et al.\(^{13}\) investigated accumulation of \(^{99m}\text{Tc-MIBI}\) in 19 patients on planar images, and reported even higher DR values: 1.58-fold greater in tumor tissue than in normal lung tissue at 30 minutes. Compared to these results, our lower DR values could be explained with the methodology of our study, calculating DR on images after 60 to 120 minutes.

Our study came up with the result that the size of lung lesion significantly affects ER and DR values tending to increase values of ER and DR in larger lesions which is in concordance with the results of other papers \(^{20, 22}\). Nishiyama et al.\(^{20}\) investigated 45 patients with malignant lung lesions divided by size (\(\leq 3 \text{ cm}, \leq 6 \text{ and } \geq 6 \text{ cm}\)) and reported higher ER and DR values of \(^{99m}\text{Tc-MIBI}\) (ranged from 2.1–3.3 and 1.9–3.0, respectively) than in our study but with the same growing tendency as the size of lung lesion increases. Minai et al.\(^{11}\) reported a correlation of quantitative uptake of \(^{99m}\text{Tc-MIBI}\) with the diameter of the nodule with a correlation coefficient of 0.61 \((p = 0.02)\). However, several studies reported no influence of sex, age, size of tumor and histological type on \(^{99m}\text{Tc-MIBI}\) accumulation results \(^{22–24}\).

In benign group of patients (the group 1) false positive results occurred in 7 out of 30 benign lesions, 6 in inflammatory pseudonodule and 1 in botryomycosis. It is well-known that chronic inflammation and active pulmonary tuberculosis could lead to high \(^{99m}\text{Tc-MIBI}\) uptake due to tissue factors such as high degree of tissue vascularization and capillary permeability. Alterations in cell metabolism that affect membrane potential, as might be the case in inflammatory lung lesions, could influence accumulation of \(^{99m}\text{Tc-MIBI}\). Furthermore, a rich mitochondrial content of epithelioid cells in granulomas might be a key point for \(^{99m}\text{Tc-MIBI}\) uptake in tuberculosis.\(^{25}\) Onsel et al.\(^{26}\) investigated \(^{99m}\text{Tc-MIBI}\) accumulation in extensive pulmonary dis-
ease with bilateral infiltrates and gained 99mTc-MIBI scan positive results in 92% cases. These results show that chronic inflammatory diseases, inflammatory pseudonodules and active tuberculosis limit the value of 99mTc-MIBI in differentiation benign from malignant lung lesions and have similar limitations as are known for 18FDG-PET/CT.

In our series of malignant lung lesions, there was no significant difference in ER, DR and RI values among four different histopathological types. Of the 3 malignant lung lesions with ER values less than 1.20, one was adenocarcinoma (ER = 1.04), one was squamous-cell carcinoma (ER = 0.93) and one small-cell carcinoma (ER = 1.17). Nishiyama et al. report that squamous-cell carcinoma has lower ER and DR values compared to adenocarcinoma (discordant to our results) and small-cell carcinoma (discrepant to our results). Hassan et al. found that adenocarcinoma and small-cell carcinoma have higher T/N values than squamous-cell carcinoma, but the results of our study show equal accumulation of 99mTc-MIBI in both squamous-cell and small-cell carcinoma. These authors also highlight that undifferentiated squamous-cell carcinoma can show no accumulation of 99mTc-MIBI, a finding that was confirmed in our study by the one case of this pathohistological cancer type which was negative on 99mTc-MIBI scan. In our study the finding that small-cell carcinoma has similar ER values as squamous-cell is in discrepancy with the Sahin et al. results showing lower uptake of 99mTc-MIBI in squamous-cell than small-cell carcinoma (1.22 ± 0.14 and 1.39 ± 0.1, respectively) with a significant difference in ER and DR values between these two histopathological types of lung cancer.

There are certain limitations of our patients population preventing us to give final conclusion about the correlation between histological type and 99mTc-MIBI scan results. Firstly, in our study on 30 patients with malignant lung lesions, there were only 2 cases of small-cell carcinoma with respect to 27.2% of cases reported by Hassan et al. Secondly, the majority of malignant lung lesions in our patients were squamous-cell carcinoma, with a low prevalence of large-cell carcinoma.

Conclusion

This study suggests that the uptake ratio of 99mTc-MIBI (early and delayed ratio) could be a useful index in evaluating benign and malignant lung lesions, while retention index has no influence on this. Considering the factors related to uptake and release of the radiopharmaceutical, there was a significant difference in ER and DR values between smallest and medium or large lung lesions, while there was no significant difference in retention index values. Other investigated factors, such as localization of the lesion or different pathohistological types among benign or malignant lesions, showed no influence on the values of ER, DR or RI.

Declaration of interest

There was no financial support received for the work and the authors had no financial involvement, or affiliation with any organization whose financial interests may be affected by the material in the manuscript, or which might potentially bias it.

REFERENCES

Received on August 6, 2012.
Revised on January 4, 2013.
Accepted on January 29, 2013.