Identification of Clostridium septicum in a tubo-ovarian abscess: A rare case and review of the literature

Identifikacija bakterije Clostridium septicum u tuboovarijalnom apscesu

Ali Yavuzcan*, Mete Çağlar*, Serdar Dilbaz*, Selahattin Kumru*, Fatma Aveoğlu†, Yusuf Üstün*

*Department of Obstetrics and Gynecology, †Department of Microbiology, Düzce University Faculty of Medicine, Düzce, Turkey

Abstract

Introduction. Tubo-ovarian abscess (TOA) is a conglomerated mass of pelvic organs including the tube, the ovary, and the bowel. The most commonly isolated organisms from TOAs are Escherichia coli (E. coli) and Bacteroides species. Case Report. We reported a case of Clostridium septicum (C. septicum) infection from a ruptured TOA with atypical clinical features. Culture of intra-abdominal free fluid obtained during surgery yielded C. septicum. VITEK II (bioMérieux, France) automated system was used for advanced identification of the bacteria. Parenteral clindamycin in combination with an aminoglycoside was used. The patient was discharged 19 days after the surgery and was clinically asymptomatic 6 months after the surgery. Conclusion. The differential diagnosis of TOA caused by C. septicum can be difficult, due to the lack of the symptoms. Tissues infected with C. septicum can become necrotic. A combination of early, adequate antibiotic therapy and surgery is the key point of the treatment.

Key words: pelvic inflammatory disease; abscess; rupture; clostridium septicum; gynecologic surgical procedures.

Identification of Clostridium septicum in a tubo-ovarian abscess: A rare case and review of the literature

Introduction

Pelvic inflammatory disease (PID), which is characterized by a polymicrobial infection in the upper genital tract, can include endometritis, salpingitis and tubo-ovarian abscess (TOA). It is generally caused by sexually transmitted infections (STIs) such as Chlamydia trachomatis and Neisseria gonorrhoeae that spread upward from the lower genital tract, infecting and causing inflammation of the uterus, fallopian tubes, and ovaries 1. Anaerobic, and facultative bacteria are the other microorganisms in the pathogenesis of PID 2. PID is one of the most common causes of hospitalization for gynecologic disorders among woman in reproductive age. In the United States, 770,000 cases of PID are diagnosed every year 3. The annual cost of PID and its consequences is estimated to be $ 4.2 billion 4. PID is usually sexually active women's disease. It may be the cause of sepsis and mortality in untreated cases. A TOA can be detected in about 15% of women with PID. TOA develops in up to 34% of patients hospitalized for PID 5.

An end-stage process of acute PID is TOA. It is a conglomerated mass of pelvic organs including tube, ovary and bowel. Severe acute PID usually generates this disease. TOA could be defined in 18–34% of patients with PID 5. Risk

DOI: 10.2298/VSP130406038Y

Correspondence to: Ali Yavuzcan, Duzce University Faculty of Medicine, Gynecology and Obstetrics Department, 81 000 Komuralp/ Duzce, Turkey. Phone: 0090 380 5421390, mobile: 00905326345431. E-mail: dralivyavuzcan@yahoo.com
factors for TOA are similar to that of PID and include multiple sexual partners, intrauterine device and low socioeconomic status. Since the disease is commonly caused by the STIs, intercourse with a partner having infection is the most important risk factor in TOA formation. However, gynecologic surgery, genital malignancy, in vitro fertilization treatment, and perforated appendicitis have also been shown to cause TOA.

The association of Clostridium species, which are gram-positive, anaerobic spore former, usually found in the soil and gastrointestinal tract, with post-traumatic and surgical wound complications is well-known. A total of 80–90% of all clostridial infections occur due to C. perfringens. C. septicum is isolated at 4–20% of clostridial infections. Spontaneous C. septicum infections are rare and associated with cyclical neutropenia, diabetes mellitus and immunosuppression. A strong association of spontaneous C. septicum infection with haematological and colorectal malignancies is known. Cerebral abscess and aortic-ring abscess due to C. septicum have also been reported. A survival rate of only 35% of patients with C. septicum has been reported regardless of the presence of an occult malignancy versus a clinically evident malignancy. It is mandatory to carry out a systematic and aggressive treatment to the approach of these patients. A ruptured TOA and septic shock with Clostridium perfringens in a postmenopausal woman was reported. Clostridium sordelli and Clostridium perfringens are responsible for a toxic shock after medical and spontaneous abortions.

We reported a rare case of C. septicum infection from a ruptured TOA with atypical clinical features.

Case report

A 38 year-old Caucasian woman, para II, gravida II, was referred to our Department with a pelvic mass. She presented with a 10-day history of nausea, vomiting and right lower abdominal pain. She had a regular menstrual cycle, her history revealed two unremarkable cesarean sections. She had not received treatment for cancer. She had her intrauterine device (IUD) removed two months before after having it for several years.

On physical examination, there was right lower quadrant tenderness. There was guarding of muscle. She had white vaginal discharge. A large, immobile, 12 × 10 cm semisolid mass at the right adnexal region was palpated via bimanual pelvic exam. There was a fixed retroverted uterus. The uterosacral ligaments and parametrium were not tender. The patient was afebrile. Vital signs were in normal ranges. The uterosacral ligaments and parametrium were not tender. She had guarding of muscle. She had several years.

The patient was referred to our Department with a pelvic mass. She presented with a 10-day history of nausea, vomiting and right lower abdominal pain. She had a regular menstrual cycle, her history revealed two unremarkable cesarean sections. She had not received treatment for cancer. She had her intrauterine device (IUD) removed two months before after having it for several years.

On physical examination, there was right lower quadrant tenderness. There was guarding of muscle. She had white vaginal discharge. A large, immobile, 12 × 10 cm semisolid mass at the right adnexal region was palpated via bimanual pelvic exam. There was a fixed retroverted uterus. The uterosacral ligaments and parametrium were not tender. The patient was afebrile. Vital signs were in normal ranges. The uterosacral ligaments and parametrium were not tender. She had guarding of muscle. She had several years.

The patient was referred to our Department with a pelvic mass. She presented with a 10-day history of nausea, vomiting and right lower abdominal pain. She had a regular menstrual cycle, her history revealed two unremarkable cesarean sections. She had not received treatment for cancer. She had her intrauterine device (IUD) removed two months before after having it for several years.

On physical examination, there was right lower quadrant tenderness. There was guarding of muscle. She had white vaginal discharge. A large, immobile, 12 × 10 cm semisolid mass at the right adnexal region was palpated via bimanual pelvic exam. There was a fixed retroverted uterus. The uterosacral ligaments and parametrium were not tender. The patient was afebrile. Vital signs were in normal ranges. The uterosacral ligaments and parametrium were not tender. She had guarding of muscle. She had several years.
Combined upper and lower gastrointestinal endoscopy was performed after detection of *C. septicum* in order to eliminate a potential neoplasm of the gastrointestinal tract. The computed tomography (CT) scan of the chest, abdomen and pelvis was done. No tumor was visualized. Postoperative CT scans also showed contrast enhancement in the previous operation site (Figure 3). The patient was discharged 19 days after the surgery, and was clinically asymptomatic 6 months after the surgery.

Discussion

Various gynecological and nongynecological pathologies can be presented as pelvic masses. Infectious diseases should be considered in differential diagnosis. Following an acute salpingitis, fallopian tubes become distended with purulent material creating a TOA. PID can lead to tubal scarring and stenosis which become distended as the tubal secretions accumulate within the tubal lumen. This process leads to the formation of hydrosalpinx and presents as a tubular pelvic mass. Both of these conditions can be chronic or acute and should be always suspected in any woman with a history of malodorous cervical discharge, pelvic pain and fever. A purely clinical approach using the findings of lower genital tract inflammation (leukorrhea) associated with pelvic organ tenderness will identify the vast majority of women with PID. The uterosacral ligaments and parametrium in our patient were not tender. There was no fever, malodorous cervical discharge, no history of PID so it was quite difficult to diagnose preoperatively.

Infections due to *Neisseria gonorrhoeae*, like those resulting from *Chlamydia trachomatis*, are a major cause of PID in the United States. But *Neisseria gonorrhoeae* and chlamydia are rarely recovered from an abscess. The most commonly isolated organisms from TOAs are *E. coli* and *Bacteroides species*. There is an association between the presence of the vaginal flora bacteria and/or actinomycetes and TOA in women who use IUDs. There is an increased risk of ascending infection. IUD tails facilitate the transfer of bacteria from the vagina/cervix to the upper genital tract. The presented patient used to have IUD but she had her IUD removed 2 months ago. No vaginal bacteria or actinomycetes in the specimens could be detected.

C. septicum causes myonecrosis through the release of exotoxins such as the alpha toxin, lethal toxin and hemolytic toxin. They were initially believed to be non-pathogenic. On the other hand, alpha toxin of *C. septicum* is necrotic and lethal. Bacteremic infections with *C. septicum* are associated with a mortality of 68% and should be treated as a medical emergency. Owing to its anaerobic nature *C. septicum* can be detected in areas of decreased blood flow. *C. septicum* infections are often detected in individuals with the recent history of trauma, surgery, peripheral vascular disease, diabetes, colon cancer, skin infections or burns and septic abortions. The diagnosis of *C. septicum*-associated large bowel malignancy may be delayed or missed. Clinical manifestations are commonly nonspecific, mimicking more common disorders. At times, no clinical clue to a colon malignancy is present. Some clinicians may be unaware of the association. Bacterial sepsis may be the initial feature of previously undiagnosed and unsuspected large bowel carcinoma. There are some atypical presentations of *C. septicum* infections that have been reported in recent years. The possible mechanism of these unusual presentations is generally hematogenous seeding of microorganism and defective circulation. Halak et al. reported a *C. septicum* infection at aortic graft. The patient had an abdominal aortic aneurysm reducing blood flow in the affected areas. It was reported that myonecrosis caused by *C. septicum* in an immunosuppressed patient with no colon cancer, but rather colonic mucosal inflammation produced by *C. difficile*. *C. septicum* infection may be detected in the orbita, brain, aorta and lower limb. *E. coli* may be a concomitant or predisposing factor. A rare mechanism is direct extension of infection, such as from incarcerated internal hernia. In 2009 Wagner et al. reported a ruptured tubo-ovarian abscess and septic shock with *Clostridium perfringens* in a postmenopausal woman. The hysterectomy specimen of that patient revealed endometrial carcinoma. A fatal case of *Clostridium sordellii* septic shock was also described.
syndrome associated with medical abortion was reported. Endomyometritis and toxic shock associated with Clostridium sordellii and Clostridium perfringens after medical and spontaneous abortion is well known. Necrotising endomyometritis due to C. sordellii infection may be notable for lack of fever, haemoconcentration and a profound leukocytosis. These properties are remarkably similar to those of ruptured TOA due to C. septicum. Ruptured TOA due to C. septicum is an extremely rare phenomenon. After evaluation, malignancy could be definitively ruled out in our patient. The presented patient, however, was not treated with immunosuppressive drugs. There was no evidence of immunosuppression.

There are few large randomized trials guiding appropriate clinical management of TOA, including antibiotic selection and timing of surgical management and drainage (Table 1).

Radiographic size, leukocyte count, age, and parity are associated with operative or procedural treatment of TOA. Originally, treatment of TOA was thought to perform bilateral oophorectomy and hysterectomy. Medical management with operative or procedural treatment of TOA was reported 34. Origi-

The best treatment alternative for ruptured TOA is surgery. Parenteral antibiotic therapy cannot be adequate for complete healing. Patients with larger abscesses usually need surgery. Dewitt et al. reported a 60% failure rate of antibiotic treatment for abscesses with dimension of ≥10 cm. After intravenous antibiotics therapy, we performed salpingo-oophorectomy in the presented patient.

Conclusion

C. septicum may cause pelvic inflammatory disease and turbo-ovarium abscess in patients without any predisposing factor. Diagnosis of turbo-ovarium abscess due to C. septicum is very hard. Lack of fever and malodorous cervical discharge, no history of pelvic inflammatory disease, no pain on movement of cervix are difficulties. The infected issues with C. septicum can become necrotic. A combination of early adequate antibiotic therapy and surgery is the key point of treatment. Although there was no malignancy in the presented patient, malignancy should be kept in mind for all kinds of infections due to C. septicum.

Table 1

<table>
<thead>
<tr>
<th>References</th>
<th>Localization</th>
<th>Predisposing disease</th>
<th>Concomitant infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halak et al. 26</td>
<td>Aortic graft</td>
<td>Abdominal aortic aneurysm</td>
<td>None</td>
</tr>
<tr>
<td>Gnerlich et al. 23</td>
<td>Colon</td>
<td>End-stage renal disease and immunodeficiency syndrome</td>
<td>C. difficile colitis</td>
</tr>
<tr>
<td>Fejes et al. 34</td>
<td>Orbita</td>
<td>Colon tumour and lymphatic malignancy</td>
<td>None</td>
</tr>
<tr>
<td>Williams et al. 25</td>
<td>Brain abscess</td>
<td>Haemolytic uraemic syndrome</td>
<td>E. coli 0157</td>
</tr>
<tr>
<td>Annapureddy et al. 26</td>
<td>Aorta</td>
<td>Atheromatous disease of the aorta</td>
<td>Non-Hodgkin’s lymphoma</td>
</tr>
<tr>
<td>Rewa and Smith 27</td>
<td>Lower limb compartment syndrome</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Ge and de Virgilio 28</td>
<td>Aorta</td>
<td>Sigmoid colon adenocarcinoma</td>
<td>None</td>
</tr>
<tr>
<td>Granok et al. 29</td>
<td>Lung pleura</td>
<td>Incarcerated internal hernia</td>
<td>None</td>
</tr>
<tr>
<td>Burnell et al. 30</td>
<td>Prosthetic joint of knee</td>
<td>Colonic malignancy</td>
<td>None</td>
</tr>
</tbody>
</table>

REFERENCES

Received on April 6, 2013.
Revised on May 6, 2013.
Accepted on July 8, 2013.