Angiogenesis: A special reference to corneal neovascularization

Angiogeneza: poseban osvrta na neovaskularizaciju rožnjače

Ljubiša Nikolić†, Vesna Jovanović‡

†Faculty of Dentistry, University of Belgrade, Belgrade, Serbia; †Oculus, Hospital for Eye Diseases, Belgrade, Serbia; ‡Department of Ophthalmology “Prof. Dr Ivan Stanković”, University Hospital “Zvezdara”, University of Belgrade, Belgrade, Serbia

Key words:
corneal neovascularisation; neovascularisation, pathologic; drug therapy.

History

Angiogenesis, the term coined in 1935 1 means the development of new blood vessels from the pre-existing capillaries and venulae. It is fundamental for reproduction, development and repair, when strict regulation and short duration prevent the uncontrolled growth of neovascularization 2. In pathological conditions, represented by solid tumors and a myriad of the neovascular diseases which involve retina, uvea and cornea, the disbalanced regulation leads to the lasting, life- or sight-threatening vascular proliferation.

Algire’s 3 observation that the tumors actively attract blood vessels, and Michaelson’s 4 conclusion that a diffusible substance, factor X, present in the extravascular retina in various concentrations, is necessary for retinal neovascularization, were the beacons along the path which lead to the right direction: development of the field of angiogenesis research fifty years ago, started by the pioneering work of Folkman et al. 5. Their hypothesis concerning the potential anticancer effects of angiogenesis inhibitors, based on the observation that the growth of solid tumors depends on their vascularization, 6 had been questioned until the isolation of a tumor factor responsible for angiogenesis 7. Folkman’s laboratory introduced new methods necessary for the new field of research: corneal pocket assay, polymers for the sustained release of macromolecules, chorioallantoic membrane, and capillary endothelial cell culture 8. Matrigel was added later 9. These new tools helped in the discovery of the first angiostimulators: basic and acid fibroblast growth factor (bFGF, aFGF), and angiogenin 10. Angiogenromodulators, most notably heparin, were added to the concept of angiogenesis 11. Heparin antidiote, protamine, was the first angioinhibitor with the known structure 12. Then followed the discovery of a potent angioinhibitory effect of heparin in the presence of cortisone 13–15 and of two endogenous angioinhibitors, angiostatin 16 and endostatin 17.

Growth factors

A large number of molecules which stimulate or inhibit angiogenesis are known today. A key role among stimulators, especially in the eye, plays vascular endothelial growth factor (VEGF) 18, 19. Its inhibition has been used for the therapy of various diseases of different organs, from colorectal cancer to age related macular degeneration, just because they share pathological angiogenesis in common.

VEGF is a potent hemoatracatant and endothelial cell mitogen. Its angiogenic action is regulated by hypoxia 20. It is a dominant factor of ocular and general angiogenesis, being a perfect match for „Factor X“ postulated by Michaelson 4 as early as 1948. A single gene is coding for binding VEGF A, B, C. D to the tyrosin-kinase receptors VEGFR 1–3. Various isoforms of VEGF, created by alternate splicing, 21 enable this growth factor to act in more than one way: to stimulate angiogenesis and vascular permeability, participate in organ development and vasculogenesis, maintain small fenestrated blood vessels, and protect nerve cells in the retina and elsewhere 22, 23.

Basic fibroblast growth factor, although unable to promote neither retinal nor choroidal neovascularization alone, can act in synergism with VEGF 24. Due to the lack of a signaling pathway for its release from cells and membranes, b FGF can act only upon their injury. Yet, its proangiogenic role is established by the findings of high levels of b FGF in the vitreous of the eyes with proliferative diabetic retinopathy, and large tumors, as well as the rodent corneal neovascularization after...
implantation of bFGF. Finally, a simultaneous inhibition of both bFGF and VEGF activities in vitro is more efficient than inhibition of only VEGF.

Findings of the raised vitreous levels of erythropoietin in proliferative diabetic retinopathy, and inhibition of neo-vascularization in the ischemic murine retina indicate that this, otherwise blood-forming substance has a role in angiogenesis. This complex process is also influenced by angiopoietins, cyclooxygenases, platelet derived growth factor (PDF), hepatocyte growth factor (HGF), placenta growth factor (PIGF), transforming growth factor-beta (TGF-β), tumor necrosis factor-alpha (TNF-α), and interleukines.

Switch to angiogenic phenotype

The sequence of events during angiogenesis is: burst of endothelial cells mitotic activity under the influence of an angiostimulator; creation of a break in the basement membrane; degradation of extracellular matrix; creation of a columnar structure through which blood starts to flow; termination of the process. For this to happen, a large number of receptors and ligands must be successively activated, while keeping a delicate balance of numerous stimulatory and inhibitory signals. Differently put, an angiogenic phenotype is achieved through a switch in the balance of angiogenesis stimulation and inhibition towards the former. As soon as the switch, usually a hypoxic stimulus, is turned on, the activity of angiogenic factors is up-regulated; the shape of the cells is changed making cells susceptible to the action of angiogenic factors; growth factors are released from their bound state; pericytes, a barrier to angiogenesis, are lost and macrophages activated; genes coding for angioinhibitors are inactivated; proteolysis of large molecules to which angionhibitors are often bound is halted; soluble, decoy receptors, like Fit-1, stop to bind angiostimulators, primarily VEGF; and notch signaling starts navigating activated cells through a matrix prepared by proteinases and bi-directional transmembrane receptors, integrins.

Corneal avascularity

One of the most useful ways towards understanding corneal angiogenesis is to study avascularity of the normal cornea. The avascularity and easy accessibility of cornea made it one of the most frequently used model of angiogenesis research. As Cogan nicely put it: „Any theory which claims to explain corneal neovasculogenesis must account for the absence of blood vessels in the normal cornea. Unlike most other tissues, except probably cartilage, the cornea has no vessels and yet it is in immediate proximity of structures having blood vessels. No anatomic boundary separates the vascular limbus from the avascular cornea. An adequate explanation for this anatomic paradox would undoubtedly account for neovascularization of the cornea“. He believed that compactness of the normal cornea presented a barrier, while corneal edema was a condition for the invasion of blood vessels. However, the shape of neovascularization induced by an isolated experimental corneal lesion led Campbell and Michaelson to postulate the presence of a diffusible stimulator of blood vessel growth. Ashton and Cook, in a lengthy critical review, added one more possible cause, hypoxia, which acted per se or by inducing the activity of a diffusible factor. These statements are nowadays incorporated into the growing body of recently accumulated data on angiogenesis.

All corneal layers participate in the maintenance of avascularity. The intact epithelium prevents both from corneal edema and activation of stromal proteinases, active players along the cascade of angiogenesis. This layer also contains a high expression of soluble VEGF receptors, which bind and inactivate this potent mitogen of vascular endothelial cells. Consequently, antagonization of one of these soluble receptors by a tripeptide modulates angiogenesis. These decoy receptors are considered as the key players in maintenance of corneal avascularity. However, a recent observation of simultaneous suppression of corneal inflammation and neovascularization by netrin, a member of the family of proteins similar to laminin, previously thought to be involved in neurogenesis only, adds to the complexity of the proposed mechanism. These substances seem to originate from the superficial limbus, possibly from its stem cells, which are likely to have a task more complex than epithelial regeneration. The appearance of new blood vessels in cases with stem cell deficiency supports this line of thinking.

Both epithelial cells and keratocytes show the expression of a potent angioinhibitor, thrombospondin. Thrombospondins induce apoptosis of vascular endothelial cells and shield them from the bFGF activity. Both epithelium and endothelium of the rat cornea show the expression of pigment epithelium derived factor (PEDF), one of the most potent angioinhibitors, which is able to block a VEGF receptor.

Matrix metaloproteinases (MMPs) are also expressed in various corneal cells. These zinc-dependent endopeptidases are able either to stimulate (MMP2, MMP14) or to inhibit (MMP3, MMP7) angiogenesis. The latter is achieved by degradation of collagen XIII and plasminogen, leaving active endostatin and angiostatin. It has recently been shown that these enzymes can also have an anti-inflammatory effect by changing a gene expression.

In conclusion, corneal avascularity is maintained by homeostasis, which includes a well-known edema-preventing balance between corneal swelling pressure and dehydration, as well as an equilibrium of numerous pro- and anti-angiogenic activities.

Corneal neovascularization

Corneal neovascularization (CONV) is formed when blood vessels from the limbus penetrate the avascular corneal tissue (Figure 1).

Subepithelial neovascularization is characterized by direct arborization of blood vessels creating a pannus, which...
splits the space between the epithelium and the Bowman’s membrane. Interstitial new blood vessels follow the direction of collagen fibers and grow in a brush-like fashion. The deepest stromal neovascularization has an umbilical shape at first, and a membranous shape upon further growth. CONV is essentially a reparatory attempt in response to hypoxia created by infection, trauma, immune reaction, tumor growth and stem cell loss. Accompanying processes and sequelae are: inflammation with cellular infiltration, edema, fibrous scarring, fatty deposit, and the loss of corneal immune privilege. The price of this reparatory process, which occasionally saves the ocular globe, is often high, and can be expressed in visual and aesthetic loss.

Fig. 1 – Corneal neovascularization.

Trachoma and onchocerciasis, both characterized by dramatic CONV, are among the world’s most frequent causes of blindness. Their eradication needs measures that belong to economy rather than angiogenesis research and therapy. But, about four percent of the population of the developed world also suffers from corneal neovascularization, mostly caused by herpes, with almost fifteen hundred thousand new cases every year. The world statistics reports forty thousand new cases of a drastic monocular visual loss or blindness per year. Other infective agents, like pseudomonas, chlamidia and fungi are less frequent causes of visual loss. The non-infective causes of CONV are: contact lens wear, ocular surface diseases, corneal graft rejection, eye drops with preservative, and trauma, especially chemical burns. The socioeconomic significance of CONV is not negligible, and the new treatment modalities can lessen the burden carried by many individuals and the society.

A key player in the ocular as well as corneal angiogenic cascade, like everywhere in the body, is VEGF. Its richest corneal resources are the epithelium, vascular endothelial cells, macrophages, and fibroblasts. VEGF expression is significantly upregulated in inflamed and vascularized corneas. On the other hand, CONV stops when VEGF or its receptors are inhibited, or when signals for VEGF release are blocked.

Other minor factors involved in CONV are bFGF, released from basement membranes after injury; PDGF, which stimulates VEGF transcription and brings pericytes to block apoptosis of new vascular buds; and angiopoietin. Recent observations add epoxyeicosanoids to this list. These products of arachidonic acid metabolism control inflammatory and angiogenic response to injury, as a part of tissue and organ repairation and regeneration.

Treatment of CONV

Corticosteroids are still the mainstay of the therapy for CONV, sometimes aided by non-specific anti-inflammatory agents (NSAID) or cyclosporine. Physical methods include diathermy and photodynamic therapy, while transplantation of the limbus is beyond the scope of this review.

Corticosteroids

Corticosteroids act mainly against inflammation by prevention of neutrophyl and macrophage accumulation (a hallmark of the late sensitivity reaction), their adhesion to the capillary endothelial cells, and formation of plasminogen activator. As Professor Claes Dohlman used to teach, this is why these medications helped the success of keratoplasty more than any surgical minuita.

Antiangiogenic effects of corticosteroids do not depend on their gluco- or mineralo-corticoid action. It seems to be achieved by capillary basement membrane degradation, and is enhanced in the presence of heparin or its pentasacharide fragment. Unfortunately, these potent drugs have many side-effects: they are associated with masking of the signs of bacterial infection, progression of herpetic keratitis, and corneal melt if given later than a week after a chemical burn. Prolonged topical corticosteroid therapy may cause cataract and glaucoma.

Physical methods

Photodynamic therapy can occlude larger blood vessels. It includes an intravenous injection and the use of argon or diode laser beam. It is a costly procedure, and the injected substance may be potentially harmful. Fine needle diathermy is quite easy to perform. Its best indication is occlusion of one or few larger blood vessel prior to keratoplasty. A long-lasting effect in a bunch of small vessels is hard to achieve.

NSAID

Topical NSAID inhibits angiogenesis in rat cornea. These medications inhibit cyclooxygenases, and the consequence is a low level of prostaglandines produced from arachidonic acid. Their use is limited to the early stages of angiogenesis, until accumulation of a large quantity of VEGF is created. Occasional corneal melts have been reported during the use of NSAID. Even one drop of a preservative-free NSAID can result in intense burning sensation. Therefore, caution and close observation are advised during their use.
Other medications

Well-known angioinhibitors, cyclosporine A, methotrexate, and tacrolimus are mainly used as a substitution of corticosteroids, when a prolonged therapy after complicated keratoplasty is needed. Angioinhibitory action of thalidomide was unknown until it produced a tragic effect of inborn phocomelia. Thalidomide has recently been found useful in the treatment of some malignant tumors and uveitis, but its use in CONV inhibition has been checked only experimentally. Amiloride, a competitive inhibitor of urokinase-type-plasminogen activator system, has been shown to inhibit CONV in various experimental models, but without a clinical use. It is interesting to speculate whether the concentrations of this drug, widely used as a diuretic, can produce inconspicuous angioinhibition.

Anti-VEGF therapy

According to a recent meta analysis, a few studies have shown that a VEGF blockade may compete with corticosteroids as the therapy of choice in cases of CONV. One of the jewels in the crown of a half a century long angiogenesis research was USA Food and Drug Administration (FDA) approval of bevacizumab, a humanized monoclonal antibody against VEGF A (Avastin, Genentech, Roche), for the adjuvant treatment of metastatic colorectal cancer first, and some other solid malignant tumors later. Intravitreal injections of this drug have also revolutionarized the therapy of the wet form of age-related macular degeneration, helped in the resolution of diffuse diabetic macular edema, and tried in various other ocular angiogenic diseases. However, the effect of topical bevacizumab in experimental CONV is only partial. It is possible that a better effect on the deep CONV can be achieved. A better drug penetration has been observed after topical application of bevacizumab, which binds only one VEGF isoform, offers less probability of complications which is unfortunately associated with a lesser effect. A novel therapeutic approach, VEGF trap, is the use of a soluble receptor molecule, aflibercept, that includes sequences from VEGFR 1 and 2, and possesses a high binding affinity for VEGF-A and B, as well as for PlGF. Its prevents VEGF from binding to its natural receptor and from promoting proliferation and migration of vascular endothelial cells. The effect of VEGF trap lasts twice as long as the effect of VEGF blockade by monoclonal antibodies.

Another approach is silencing of a gene for VEGF production by one of ribonucleic acids, which inhibits the post-transcriptional processing and signals from tyrosin-kinase receptors.

Targets other than VEGF

Among the substances which have also been tried for CONV inhibition are topical netrins, infliximab, a monoclonal antibody against TNF-α, and doxycycline. Doxycycline is a tetracycline and a potent MMP inhibitor. Doxycycline acts in synergism with bevacizumab, and can additionally protect the corneal epithelium from untoward effects of the latter.

Conclusion

It appears that the ocular anti-angiogenic therapy in the years ahead will find more use of vascular endothelial growth factor trap and integrins, and less of corticosteroids and monoclonal antibodies against vascular endothelial growth factor. Inexpensive therapy with a well-known drug, doxycycline, might be used when corneal neovascularization is associated with disturbed epithelium. In the distant future treatment of corneal neovascularization will probably be based upon targeting a specific gene.

REFERENCES

Hypoxic induction of endothelial cell growth factors in retinal

lar endothelial growth factors. Mol Divers 2006; 10(4): 515

J Biol Chem 1991; 266(18): 11947

tiple protein forms are encoded through alternative exon splicing.

et al. The human gene for vascular endothelial growth factor. Mul-

Folkman J, Merler E, Abernathy C, Williams G

Folkman J, Klagsbrun M

Dvorak HF, Brown LF, Detmar M, Dvorak AM.

Dameron KM, Volpert OV, Tainsky MA, Bouck N

Gerhardt H, Betsholtz C. Endothelial-pericyte interactions in an-

Pepper MS. Role of the matrix metalloproteinase and plasmino-

Cogan DG. Vascularization of the cornea: its experimental induction by small lesions and a new theory of its pathogene-

Ingber DE. Fibronectin controls capillary endothelial cell growth by modulating cell shape. Proc Natl Acad Sci U S A 1990; 87(9): 3579−83.

Speier P, Gittelsohn AM, Patz A. Studies on diabetic retinopa-

Gerhardt H, Betsholtz C. Endothelial-pericyte interactions in an-

Pepper MS. Role of the matrix metalloproteinase and plasmino-

Cogan DG. Vascularization of the cornea: its experimental in-
duction by small lesions and a new theory of its pathogene-

tripetide that antagonizes vascular endothelial growth factor re-
taneously suppresses corneal inflammation and neovascularization.
55. Danuser G, Verstynen T. Role of the peripheral vascular supply
56. Eibato B, Friend J, Thoft R-A. Comparison of central and peripheral
human corneal epithelium in tissue culture. Invest Ophthalmol Vis Sci
57. Ti S, Greuterfeld M, Espana EM, Touhami A, Anderson DF, Yung SC.
Correlation of long term phenotypic and clinical outcomes follow-
ing limbal epithelial transplantation cultivated on amniotic mem-
1352–8.
60. Agra DT. Corneal angiogenic privilege: angiogenic and antiangi-
genic factors in corneal avascularity, vasclogenesis, and wound healing (an American Ophthalmological Society thesis). Trans Am
61. Cai J, Jiang WG, Grant MB, Boufflon M. Pigment epithelium-derived
factor inhibits angiogenesis via regulated intracellular proteolysis of
vascular endothelial growth factor receptor 1. J Biol Chem 2006;
62. Pepper MS. Extracellular proteolysis and angiogenesis. Thromb
63. Khamis ZI, Zorin DA, Chung LW, Song Q-A. The Anti-inflammatory
Role of Eomodetase/Matrilysin-2 in Human Prostate Cancer
64. Mann I, For A, Pullinger BD. An experimental and clinical study of
the reaction of the anterior segment of the eye to chemical injury, with special reference to chemical warfare agents. Br J Ophthal-
mol 1948; 31(Suppl): 171.
66. Lee P, Wang CC, Adams PT. Ocular neovascularization: an epi-
448–62.
68. Philipp W, Speicher L, Humpel C. Expression of vascular endothelial
growth factor and its receptors in inflamed and vascularized hu-
69. Stevenson W, Cheng S, Dustagiri MH, Ferraro G, Dana R. Corneal ne-
ovascularization and the utility of topical VEGF inhibitors: raubi-
mumah (Lucentis) vs bevacizumab (Avastin). Ocul Surf 2012;
70. Kim LA, D'Ammore P-A. A brief history of anti-VEGF for the
treatment of ocular angiogenesis. Am J Pathol 2012; 181(2):
376–9.
71. Hysagkarthu J, Sudrau V, Chauhan SK, Duna R. b-FGF induces
corneal blood and lymphatic vessel growth in a spatially distinct pat-
perivascular progenitor cells in tumours regulate pericyte differen-
74. Hugueno RC, Murad F. Adrenocorticotropic hormone; adrenocorti-
coidal steroids and their synthetic analogs; inhibitors of adrenocortical
steroid biosynthesis. In: Gilman AG, Goodman LS, Rall TW, Murad
F, editors. Goodman and Gilman’s The Pharmacological Basis of
p. 1459–89.
75. Ingber DE, Madri JA, Folkman J. A possible mechanism for inhibi-
tion of angiogenesis by angostastic steroids: induction of capillary
1768–75.
76. Renfy L, Snow JS. Ocular effects of topical and systemic steroids.
77. Thorne JH, Worsa VA, Duna J, Jals D-A. Risk of cataract de-
vlopment among children with juvenile idiopathic arthritis-related
uveitis treated with topical corticosteroids. Ophthalmology 2010;
117(7): 1436–41.
78. Brewer P. Origin of corticosteroid glaucoma. Bull Soc Belge Oph-
talmol 2007; (304): 111–6. (French)
79. Sheppard JD, Epstein RJ, Lattanzio F-A, Marionato D, Williams PB.
Argon laser photodynamic therapy of human corneal neovascu-
larization after intravenous administration of dexamethasone phos-
80. Pillai CT, Dias HS, Hussain P. Fine needle dithermy occlusion of
81. Maguire MG, Stark WF, Gottich JD, Studding DG, Sugar A, Fink NE,
et al. Risk factors for corneal graft failure and rejection in the col-
laborative corneal transplantation studies. Collaborative Corneal
101(9): 1536–47.
Topical nepafenac inhibits ocular neovascularization. Invest Oph-
83. Zanini M, Savini G, Barboni P. Corneal melting associated with topi-
cal diclofenac use after laser-assisted subepithelial keratectomy. J
84. Asai T, Nakanagami T, Mustakizi M, Hata N, Tsuchiya T, Hotta Y.
Three cases of corneal melting after instillation of a new nonster-
85. Motitisa E, Varasamo D. Comparison of Ocular Tolerability Be-
tween Preserved and Preservative-Free Diclofenac Sodium Drops.
86. Lipman RM, Epstein RJ, Hendrich RL. Suppression of corneal ne-
87. Zanini M, Savini G, Barbou P. Corneal melting associated with topi-
cal diclofenac use after laser-assisted subepithelial keratectomy. J
88. Zanini M, Savini G, Barbou P. Corneal melting associated with topi-
cal diclofenac use after laser-assisted subepithelial keratectomy. J
89. Asai T, Nakanagami T, Mustakizi M, Hata N, Tsuchiya T, Hotta Y.
Three cases of corneal melting after instillation of a new nonster-
90. Motitisa E, Varasamo D. Comparison of Ocular Tolerability Be-
tween Preserved and Preservative-Free Diclofenac Sodium Drops.
91. Lipman RM, Epstein RJ, Hendrich RL. Suppression of corneal ne-
92. Zanini M, Savini G, Barbou P. Corneal melting associated with topi-
cal diclofenac use after laser-assisted subepithelial keratectomy. J
93. Asai T, Nakanagami T, Mustakizi M, Hata N, Tsuchiya T, Hotta Y.
Three cases of corneal melting after instillation of a new nonster-
94. Motitisa E, Varasamo D. Comparison of Ocular Tolerability Be-
tween Preserved and Preservative-Free Diclofenac Sodium Drops.
95. Lipman RM, Epstein RJ, Hendrich RL. Suppression of corneal ne-