Primena mašinskog učenja u borbi protiv COVID-19 pandemije
Sažetak
Mašinsko učenje (engl. Machine Learning – ML) ima značajnu ulogu u borbi protiv COVID-19 pandemije (SARS-CoV-2). ML bazirane tehnike omogućavaju brzo otkrivanje uzročno-posledičnih veza i trendova iz velikog uzorka podataka. Zbog toga ove tehnike pružaju efikasne metode za generisanje informacija i sticanje znanja iz struktuiranih i nestruktuiranih podataka. Ovo je posebno značajno u uslovima koji utiču na sve apsekte ljudskih života kao što je slučaj sa pandemijama. U ovakvim slučajevima je neophodno prikupljati veliku količinu podataka koja će omogućiti donošenje odgovarajućih mera za sprečavanje širenja pandemije, ranu dijagnostiku infekcije, pronalazak lekova, smanjenje negativnih posledica, itd. Savremene informacijske i komunikacijske tehnologije (IKT) omogućavaju i nove koncepte primene kao što je Internet stvari (engl. Internet of Things –IoT), a koji omogućava automatizirano i efikasno prikupljanje podataka iz različitih izvora. Ovo otvara mogućnosti za kreiranje efikasnih ML-baziranih mehanizama i prediktivnih modela potrebnih za donošenje odgovarajućih mera i odluka u specifičnim situacijama. Ovaj rad prezentuje najkorištenije primene mašinskog učenja za smanjenje uticaja COVID-19 pandemije. Cilj je da se prikažu potencijali, rešenja i mogućnosti primene različitih tehnika, algoritama i skupova podataka (engl. datasets) u kontekstu borbe protiv navedene pandemije. Također, u radu su predstavljene određene ideje i otvorena pitanja za buduća istraživanja što može koristiti kao polazna tačka za buduća istraživanja.
Reference
[1] | S. Lalmuanawma, J. Hussain i L. Chhakchhuak, “Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review,” Chaos, Solitons & Fractals, tom 139, pp. 1-6, 2020. |
[2] | E. M. Nwanosike, B. R Conway, H. A Merchant i S. Shahzad Hasan, “Potential applications and performance of machine learning techniques and algorithms in clinical practice: A systematic review,” International Journal of Medical Informatics, tom 159, 2022. |
[3] | A. J. Kucharski i e. al., “Early dynamics of transmission and control of COVID-19: a mathematical modelling study,” The Lancet Infectious Diseases, tom 20, br. 5, pp. 553-558, 2020. |
[4] | C. Pearce, A. McLeod, J. Supple, K. Gardner, A. Proposch and J. Ferrigi, "Predicting prognosis in COVID-19 patients using machine learning and readily available clinical data," International Journal of Medical Informatics, vol. 155, pp. 1-10, 2021. |
[5] | T. Ai, Z. Yang, H. Hou, C. Zhan, C. Chen, W. Lv, Q. Tao, Z. Sun and L. Xia, "Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China," Radiology, vol. 296, no. 2, pp. E32-E40, 2020. |
[6] | J. Rasheed, A. Jamil i e. a. Ali Hameed, “A survey on artificial intelligence approaches in supporting frontline workers and decision makers for the COVID-19 pandemic,” Chaos, Solitons and Fractals, tom 141, pp. 1-17, 2020. |
[7] | B. Xu i M. U. G. Kraemer, “Open access epidemiological data from the COVID-19 outbreak,” The Lancet Infectious Disease, tom 20, br. 5, p. 534, 2020. |
[8] | A. Verma, S. B. Amin, M. Naeem i M. Saha, “Detecting COVID-19 from chest computed tomography scans using AI-driven android application,” Computers in Biology and Medicine, Tom. %1 od %2In Press, Journal Pre-proof, 2022. |
[9] | H. Hassan, Z. Ren, H. Zhao, S. Huang, D. Li, S. Xiang, Y. Kang, S. Chen and B. Huang, "Review and classification of AI-enabled COVID-19 CT imaging models based on computer vision tasks," Computers in Biology and Medicine, vol. 141, pp. 1-21, 2022. |
[10] | M. Z. Islam, M. M. Islam i A. Asraf, “A combined deep CNN-LSTM network for the detection of novel coronavirus (COVID-19) using X-ray images,” Informatics in Medicine Unlocked, tom 20, p. 100412, 2020. |
[11] | M. W. Libbrecht i W. S. Noble, “Machine learning applications in genetics and genomics,” Nature Reviews Genetics, tom 16, p. 321–332, 2015. |
[12] | T. Panch, P. Szolovits i R. Atun, “Artificial intelligence, machine learning and health systems,” J Glob Health, tom 8, br. 2, pp. 1-8, 2018. |
[13] | A. L.Yin, W. L.Guo, E. T.Sholle i e. al., “Comparing automated vs. manual data collection for COVID-specific medications from electronic health records,” International Journal of Medical Informatics, tom 157, pp. 1-11, 2022. |
[14] | Z. Hou, F. Du, H. Jiang, X. Zhou i L. Lin, “Assessment of public attention, risk perception, emotional and behavioural responses to the COVID-19 outbreak: social media surveillance in China,” medRxiv 2020.03.14.20035956, 2020. |
[15] | B. Chen, M. Shi, X. Ni i e. al., “Visual Data Analysis and Simulation Prediction for COVID-19,” arXiv:2002.07096, 2020. |
[16] | M. Ndiaye, S. S. Oyewobi, A. M. Abu-Mahfouz, G. P. Hancke, A. M. Kurien and K. Djouani, "IoT in the Wake of COVID-19: A Survey on Contributions, Challenges and Evolution," IEEE Access, vol. 8, pp. 186821-186839, 2020. |
[17] | Z. Geng, X. Zhang, Z. Fan, X. Lv, Y. Su and H. Chen, "Recent Progress in Optical Biosensors Based on Smartphone Platforms," Sensors, vol. 17, no. 11, pp. 1-19, 2017. |
[18] | C.-M. Chen, H.-W. Jyan, S.-C. Chien i et.al., “Containing COVID-19 Among 627,386 Persons in Contact With the Diamond Princess Cruise Ship Passengers Who Disembarked in Taiwan: Big Data Analytics,” Journal of Medical Internet Research, tom 22, br. 5, pp. 1-9, 2020. |
[19] | J. Shuja, E. Alanazi, W. Alasmary i A. Alashaikh, “COVID-19 open source data sets: a comprehensive survey,” Applied Intelligence, tom 51, p. 1296–1325. |
[20] | Z. Malki, E.-S. Atlam, A. Ella Hassanien, G. Dagnew, M. A.Elhosseini and I. Gad, "Association between weather data and COVID-19 pandemic predicting mortality rate: Machine learning approaches," Chaos, Solitons & Fractals, vol. 138, pp. 1-10, 2020. |
[21] | C. Iwendi, A. Kashif Bashir, A. Peshkar i e. al., “COVID-19 Patient Health Prediction Using Boosted Random Forest Algorithm,” Frontiers in Public Health, tom 8, pp. 1-9, 2020. |
[22] | M. Yadav, M. Perumal i D. M. Srinivas, “Analysis on novel coronavirus (COVID-19) using machine learning methods,” Chaos, Solitons & Fractals, tom 139, pp. 1-12, 2020. |
[23] | X. Zhao, X. Liu i X. Li, “Tracking the spread of novel coronavirus (2019-nCoV) based on big data,” medRxiv, 2020. |
[24] | J. Paul Cohen, P. Morrison and D. Lan, "Covid-19 Image Data Collection," 1 10 2020. [Online]. Available: https://github.com/IEEE8023/covid-chestxray-dataset.. [Accessed 24 2 2022]. |
[25] | E. Dong, H. Du i L. Gardner, “An interactive web-based dashboard to track COVID-19 in real time,” The Lancet Infectious Diseases, tom 20, br. 5, pp. 533-534, 2020. |
[26] | G. Pandey, P. Chaudhary, R. Gupta i S. Pal, “SEIR and Regression Model based COVID-19 outbreak predictions in India,” arXiv:2004.00958, 2020. |
[27] | E. Mathieu i e. al., “A global database of COVID-19 vaccinations,” nature human behaviour, tom 5, p. 947–953, 2021. |
[28] | European Centre for Disease Prevention and Control, "Download COVID-19 datasets," 11 3 2021. [Online]. Available: https://www.ecdc.europa.eu/en/covid-19/data. [Accessed 3 November 2021]. |
[29] | A. Fetić i A. Dželihodžić, “A practical implementation of machine learning in predicting breast cancer,” Science, Engineering and Technology, tom 1, br. 2, p. 16–23, 2021. |
[30] | S. Feng i L. Xu, “An intelligent decision support system for fuzzy comprehensive evaluation of urban development,” Expert Systems with Applications, tom 16, br. 1, pp. 21-32, 1999. |
[31] | A. Likas, N. Vlassis i J. Verbeek, “The global k-means clustering algorithm,” Pattern Recognition, tom 36, br. 2, pp. 451 - 461, 2003. |
[32] | J. Qiu, Q. Wu, G. Ding, Y. Xu i S. Feng, “Erratum to: A survey of machine learning for big data processing,” EURASIP Journal on Advances in Signal Processing, pp. 1-16, 2016. |
[33] | J. L. Berral-García, “A quick view on current techniques and machine learning algorithms for big data analytics,” u 18th International Conference on Transparent Optical Networks (ICTON), Trento, Italy, 2016. |
[34] | P.-Y. Wu, C.-W. Cheng, C. D Kaddi, J. Venugopalan, R. Hoffman i M. D. Wang, “Omic and Electronic Health Record Big Data Analytics for Precision Medicine,” IEEE Transactions on Biomedical Engineering, tom 64, br. 2, pp. 263-273, 2017. |
[35] | L. Wang i C. Ann Alexander, “Machine Learning in Big Data,” International Journal of Mathematical, Engineering and Management Sciences, tom 1, br. 2, p. 52–61, 2016. |
[36] | A. S. Fomsgaard i M. W. Rosenstierne, “An alternative workflow for molecular detection of SARS-CoV-2 – escape from the NA extraction kit-shortage, Copenhagen, Denmark, March 2020,” Eurosurveillance, tom 25, br. 14, p. Art. no. 2000398, 2020. |
[37] | G. J.L., B. Abraham, S. M.S. i M. S.Nair, “A computer-aided diagnosis system for the classification of COVID-19 and non-COVID-19 pneumonia on chest X-ray images by integrating CNN with sparse autoencoder and feed forward neural network,” Computers in Biology and Medicine, tom 141, pp. 1-10, 2021. |
[38] | Z. Tang, W. Zhao, X. Xie, Z. Zhong, F. Shi, J. Liu and D. Shen, "Severity Assessment of Coronavirus Disease 2019 (COVID-19) Using Quantitative Features from Chest CT Images," arXiv, p. arXiv:2003.11988, 2020. |
[39] | A. Iqbal Khan, J. Latief Shah and M. Mudasir Bhat, "CoroNet: A deep neural network for detection and diagnosis of COVID-19 from chest x-ray images," Computer Methods and Programs in Biomedicine, vol. 196, p. 105581, 2020. |
[40] | L. Wang, Z. Qiu Lin i A. Wong, “COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images.,” Scientific Reports, tom 10, pp. 1-12, 2020. |
[41] | S. Wang, B. Kang i et.al., “A deep learning algorithm using CT images to screen for Corona virus disease (COVID-19),” European Radiology, tom 31, p. 6096–6104, 2021. |
[42] | X. Xu i et.al., “A Deep Learning System to Screen Novel Coronavirus Disease 2019 Pneumonia,” Engineering, tom 6, br. 10, pp. 1122-1129, 2020. |
[43] | C. Jin i e. al., “Development and evaluation of an artificial intelligence system for COVID-19 diagnosis,” Nature Communications volume, tom 11, 2020. |
[44] | A. Imran, I. Posokhova, H. N Qureshi, U. Masood, S. Riaz, K. Ali, C. N John and M. Nabeel, "Ai4covid-19: AI enabled preliminary diagnosis for covid-19 from cough samples via an app," Informatics in Medicine Unlocked, vol. 20, pp. 1-13, 2020. |
[45] | V. Chamola, V. Hassija, V. Gupta i M. Guizani, “A Comprehensive Review of the COVID-19 Pandemic and the Role of IoT,Drones, AI, Blockchain, and 5G in Managing Its Impact,” IEEE Access, tom 8, pp. 90225-90265, 2020. |
[46] | G. J.L, B. Abraham, S. M.S. i M. S.Nair, “A computer-aided diagnosis system for the classification of COVID-19 and non-COVID-19 pneumonia on chest X-ray images by integrating CNN with sparse autoencoder and feed forward neural network,” Computers in Biology and Medicine, tom 141, pp. 1-10, 2022. |
[47] | I. Lahsaini, M. El Habib Daho i M. A. Chikh, “Deep transfer learning based classification model for covid-19 using chest CT-scans,” Pattern Recognition Letters, tom 152, pp. 122-128, 2021. |
[48] | W. Tse Li, J. Ma i et.al., “Using machine learning of clinical data to diagnose COVID-19: a systematic review and meta-analysis,” BMC Medical Informatics and Decision Making, tom 20, br. 247, pp. 1-13, 2020. |
[49] | X. Zhong, F. Deng i H. Ouyang, “Sharp Threshold for the Dynamics of a SIRS Epidemic Model With General Awareness- Induced Incidence and Four Independent Brownian Motions,” IEEE Access, tom 8, p. IEEE Access, 2020. |
[50] | R. Dandekar i G. Barbastathis, “Neural Network aided quarantine control model estimation of COVID spread in Wuhan, China,” arXiv:2003.09403, pp. 1-9, 2020. |
[51] | N. Crokidakis, “Modeling the early evolution of the COVID-19 in Brazil: Results from a Susceptible–Infectious–Quarantined–Recovered (SIQR) model,” International Journal of Modern Physics C, tom 31, br. 10, 2020. |
[52] | G. Gaeta, “A simple SIR model with a large set of asymptomatic infectives,” Mathematics in Engineering, tom 3, br. 2, pp. 1-39, 2020. |
[53] | E. Mbunge, “Integrating emerging technologies into COVID-19 contact tracing: Opportunities, challenges and pitfalls,” Diabetes & Metabolic Syndrome: Clinical Research & Reviews, tom 14, br. 6, pp. 1631-1636, 2020. |
[54] | Y.-C. Chen, P.-E. Lu, C.-S. Chang i T.-H. Liu, “A Time-dependent SIR model for COVID-19 with Undetectable Infected Persons,” arXiv, p. arXiv:2003.00122, 2020. |
[55] | H. S. Maghdid, K. Zrar Ghafoor, A. Safaa Sadiq, K. Curran, D. B. Rawat i K. Rabie, “A Novel AI-enabled Framework to Diagnose Coronavirus COVID 19 using Smartphone Embedded Sensors: Design Study,” arXiv:2003.07434, pp. 1-7, 2020. |
[56] | G. Giordano, F. Blanchini, R. Bruno, P. Colaneri, A. Di Filippo, A. Di Matteo and M. Colaneri, "Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy," Nature Medicine, vol. 26, p. 855–860, 2020. |
[57] | P. D. Kavadi, R. Patan, M. Ramachandran i A. H.Gandomi, “Partial derivative Nonlinear Global Pandemic Machine Learning prediction of COVID 19,” Chaos, Solitons & Fractals, tom 139, pp. 1-7, 2020. |
[58] | R. M. Carrillo-Larco i M. Castillo-Cara, “Using country-level variables to classify countries according to the number of confirmed COVID-19 cases: An unsupervised machine learning approac [version 3; peer review: 2 approved],” Wellcome Open Research, pp. 5:56; 1-22, 2020. |
[59] | C. Hu, Z. Liu, Y. Jiang i e. al., “Early prediction of mortality risk among patients with severe COVID-19, using machine learning,” International Journal of Epidemiology, tom 49, br. 6, p. 1918–1929, 2020. |
[60] | X. Bai, C. Fang, Y. Zhou i e. al., “Predicting COVID-19 Malignant Progression with AI Techniques,” The Lancet, 2020. |
[61] | O. Albahri, J. R.Al-Obaidi, A. Zaidan i e. al., “Helping doctors hasten COVID-19 treatment: Towards a rescue framework for the transfusion of best convalescent plasma to the most critical patients based on biological requirements via ml and novel MCDM methods,” Computer Methods and Programs in Biomedicine, tom 196, pp. 1-13, 2020. |
[62] | V. K. Reddy Chimmula i L. Zhang, “Time series forecasting of COVID-19 transmission in Canada using LSTM networks,” Chaos, Solitons & Fractals, tom 135, p. 109864, 2020. |
[63] | A. Haleem, R. Vaishya, M. Javaid i I. Haleem Khan, “Artificial Intelligence (AI) applications in orthopaedics: An innovative technology to embrace,” Journal of Clinical Orthopaedics and Trauma, tom 11, pp. S80-S81, 2020. |
[64] | S. Chen, J. Yang, W. Yang, C. Wang i T. Bärnighausen, “COVID-19 control in China during mass population movements at New Year,” The Lancet, tom 395, br. 10226, pp. 764-766, 2020. |
[65] | D. Ward, M. Higgins, J. E. Phelan, M. L. Hibberd, S. Campino i T. G. Clark, “An integrated in silico immuno-genetic analytical platform provides insights into COVID-19 serological and vaccine targets,” Genome Medicine, tom 13, pp. 1-12, 2021. |
[66] | A. Zhavoronkov, V. A. Aladinskiy i e. al., “Potential 2019-nCoV 3C-like protease inhibitors designed using generative deep learning approaches,” ChemRxiv, 2020. |
[67] | P. Y. A. B. F. Rishikesh Magar, “Potential neutralizing antibodies discovered for novel corona virus using machine learning,” Scientific Reports, pp. 1-11, 2021. |
[68] | S. Faraz Ahmed, A. A. Quadeer i M. R. McKay, “Preliminary Identification of Potential Vaccine Targets for the COVID-19 Coronavirus (SARS-CoV-2) Based on SARS-CoV Immunological Studies,” Viruses, tom 12, br. 3, pp. 1-15, 2020. |
[69] | A. Banerjee, D. Santra and S. Maiti, "Energetics and IC50 based epitope screening in SARS CoV-2 (COVID 19) spike protein by immunoinformatic analysis implicating for a suitable vaccine development," Journal of Translational Medicine, vol. 18, p. a.n. 281, 2020. |
[70] | B. R. Beck, B. Shin, Y. Choi, S. Park i K. Kang, “Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model,” Computational and Structural Biotechnology Journal, tom 18, pp. 784-790, 2020. |
[71] | L. Romeo i E. Frontoni, “A Unified Hierarchical XGBoost model for classifying priorities for COVID-19 vaccination campaign,” Pattern Recognition, tom 121, pp. 1-13, 2022. |
[72] | Z. Su i e. al., “Young adults’ preferences for influenza vaccination campaign messages: Implications for COVID-19 vaccine intervention design and development,” Brain, Behavior, & Immunity - Health, tom 14, pp. 1-9, 2021. |
[73] | O. Gozes, M. Frid-Adar, H. Greenspan, P. D. Browning, H. Zhang, W. Ji, A. Bernheim i E. Siegel, “Rapid AI Development Cycle for the Coronavirus (COVID-19) Pandemic: Initial Results for Automated Detection & Patient Monitoring using Deep Learning CT Image Analysis,” Radiology: Artificial Intelligence , 2020. |
[74] | A. Haleem, M. Javaid i R. Vaishya, “Effects of COVID 19 pandemic in daily life,” Current Medicine Research and Practice, tom 10, br. 2, pp. 78-79, 2020. |
[75] | H. Kang i e. al., “Diagnosis of Coronavirus Disease 2019 (COVID-19) With Structured Latent Multi-View Representation Learning,” IEEE Transactions on Medical Imaging , tom 39, br. 8, pp. 2606 - 2614, 2020. |
[76] | L. Zhou, Z. Li, J. Zhou i e. al., “A Rapid, Accurate and Machine-Agnostic Segmentation and Quantification Method for CT-Based COVID-19 Diagnosis,” IEEE Transactions on Medical Imaging, tom 39, br. 8, pp. 2638 - 2652, 20. |
[77] | A. Abbasian Ardakani, U. R. Acharya, S. Habibollahi i A. Mohammadi, “COVIDiag: a clinical CAD system to diagnose COVID-19 pneumonia based on CT findings,” Eur Radiol, tom 31, p. 121–130, 2021. |
[78] | P. Kumar Sethy, S. Kumari Behera, P. Kumar Ratha i P. Biswas, “Detection of Coronavirus Disease (COVID-19) based on Deep Features and Support Vector Machine,” International Journal of Mathematical, Engineering and Management Sciences, tom 5, br. 4, pp. 643-651, 202. |
[79] | S. Hoon Yoo i e. al., “Deep Learning-Based Decision-Tree Classifier for COVID-19 Diagnosis From Chest X-ray Imaging,” Frontiers in Medicine, tom 7, pp. 1-8, 2020. |
[80] | M. Toğaçar, B. Ergen i Z. Cömert, “COVID-19 detection using deep learning models to exploit Social Mimic Optimization and structured chest X-ray images using fuzzy color and stacking approaches,” Computers in Biology and Medicine, tom 121, pp. 1-12, 2020. |
[81] | T. Tuncer, S. Dogan i F. Ozyurt, “An automated Residual Exemplar Local Binary Pattern and iterative ReliefF based COVID-19 detection method using chest X-ray image,” Chemometrics and Intelligent Laboratory Systems, tom 203, pp. 1-11, 2020. |
[82] | H. S. Yang, Y. Hou, L. V. Vasovic i e. al., “Routine Laboratory Blood Tests Predict SARS-CoV-2 Infection Using Machine Learning,” Clinical Chemistry, tom 66, br. 11, p. 1396–1404, 2020. |
[83] | A. F. de Moraes Batista i e. al., “COVID-19 diagnosis prediction in emergency care patients: a machine learning approach,” medRxiv, 2020. |
[84] | J. Wu, P. Zhang, L. Zhang i e. al., “Rapid and accurate identification of COVID-19 infection through machine learning based on clinical available blood test results,” medRxiv, pp. 1-12, 2020. |
[85] | D. Brinati, A. Campagner, D. Ferrari, M. Locatelli, G. Banfi and F. Cabitza, "Detection of COVID-19 Infection from Routine Blood Exams with Machine Learning: A Feasibility Study," Journal of Medical Systems, vol. 44, pp. 1-12, 2020. |
[86] | A. M. Ud Din Khanday, S. Tanzeel Rabani, Q. Rayees Khan, N. Rouf i M. Mohi Ud Din, “Machine learning based approaches for detecting COVID-19 using clinical text data,” International Journal of Information Technology, tom 12, p. 731–739, 2020. |
[87] | Y. Wang, M. Hu, Y. Zhou, Q. Li, N. Yao, G. Zhai, X.-P. Zhang and X. Yang, "Unobtrusive and Automatic Classification of Multiple People’s Abnormal Respiratory Patterns in Real Time Using Deep Neural Network and Depth Camera," IEEE Internet of Things Journal, vol. 7, no. 9, pp. 8559 - 8571, 2020. |
[88] | Z. Jiang, M. Hu, Z. Gao i e. al., “Detection of Respiratory Infections Using RGB-Infrared Sensors on Portable Device,” IEEE Sensors Journal, tom 20, br. 22, pp. 13674 - 13681, 2020. |
[89] | Y. Wang, M. Hu, Q. Li, X.-P. Zhang, G. Zhai and N. Yao, "Abnormal respiratory patterns classifier may contribute to large-scale screening of people infected with COVID-19 in an accurate and unobtrusive manner," arXiv:2002.05534, pp. 1-6, 2020. |
[90] | C. Brown, J. Chauhan, J. Han i e. al., “Exploring Automatic Diagnosis of COVID-19 from Crowdsourced Respiratory Sound Data,” u 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020. |
[91] | V. Despotovic, M. Ismael, M. Cornil, R. Mc Call i G. Fagherazzi, “Detection of COVID-19 from voice, cough and breathing patterns: Dataset and preliminary results,” Computers in Biology and Medicine, tom 138, pp. 1-9, 2021. |
[92] | M. Pahar, M. Klopper, R. Warren i T. Niesler, “COVID-19 detection in cough, breath and speech using deep transfer learning and bottleneck features,” Computers in Biology and Medicine, tom 141, pp. 1-13, 2022. |
[93] | F. Rustam, A. Ahmad Reshi, A. Mehmood, S. Ullah, B.-W. On, W. Aslam and G. Sang Choi, "COVID-19 Future Forecasting Using Supervised Machine Learning Models," IEEE Access, vol. 8, pp. 101489 - 101499, 2020. |
[94] | Y. Ye, S. Hou, Y. Fan, Y. Qian, Y. Zhang, S. Sun, Q. Peng and K. Laparo, "α-Satellite: An AI-driven System and Benchmark Datasets for Hierarchical Community-level Risk Assessment to Help Combat COVID-19," arXiv:2003.12232, pp. 1-9, 2020. |
[95] | F. Shahid, A. Zameer i M. Muneeb, “Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM,” Chaos, Solitons & Fractals, tom 140, pp. 1-9, 2020. |
[96] | S. Kamal Paul, S. Jana i P. Bhaumik, “A Multivariate Spatiotemporal Model of COVID-19 Epidemic Using Ensemble of ConvLSTM Networks,” Journal of The Institution of Engineers (India): Series B, tom 102, p. 1137–1142, 2021. |
[97] | S. Tuli, S. Tuli, R. Tuli i S. Singh Gill, “Predicting the growth and trend of COVID-19 pandemic using machine learning and cloud computing,” Internet of Things, tom 11, pp. 1-16, 2020. |
