Teranostika i precizna medicina u neuroendokrinim tumorima

  • Filip Veličković MD
Ključne reči: neuroendokrini tumori, somatostatinski receptori, scintigrafija, radionuklidna terapija

Sažetak


Uvod. Neuroendokrini tumori (NET) imaju povećanu ekspresiju somatostatinskih receptora (SSTR), pri čemu su najčešći podtipovi 2 i 5. Prekomerna ekspresija SSTR-a je izvanredna molekularna meta za neoperabilne i metastatske NET-ove koja omogućava jedinstven pristup ciljanoj dijagnostici i terapiji. Pored SSTR, neuroendokrini tumori eksprimiraju i druge receptore koji mogu biti pogodne mete za vizuelizaciju metodama nuklearne medicine.

Cilj. Ovaj pregledni rad je fokusiran na najčešće radiofarmaceutike i njihove molekularne mete koje se danas koriste na osnovu teranostičkog pristupa u NET.

 Rezultati. U konvencionalnoj nuklearnoj medicini najvažniji dijagnostički radiofarmaceutici su analozi somatostatina (SSA) obeleženi 111In i 99mTc, međutim 99mTc ima prednost u odnosu na 111In na osnovu boljih fizičkih karakteristika i lakšeg izvođenja. Poslednjih godina stvoreni su veoma moćni teranostički parovi za snimanje i lečenje NET-ova, koji se mogu snažno vezati za SSTR. Derivati 68Ga obeleženih oktreotidom se preporučuju za dijagnostiku i praćenje NET-a. Velika prednost 68Ga radiofarmaceutika je u tome što se identična jedinjenja mogu obeležiti terapeutskim radionuklidima 90Y i 177Lu.

 

Zaključak. Radionuklidna terapija usmerena na peptidne receptore je sistemska molekularna ciljna terapija koja se pokazala bezbednom i veoma efikasnom u kontroli bolesti i dužem preživljavanju pacijenata sa uznapredovalim i neoperabilnim NET. Uz zanemarljiv broj neželjenih efekata, ova terapija je bezbedna i treba je primeniti kod svih pacijenata koji ispunjavaju neophodne kriterijume, pre svega prekomernu ekspresiju SSTR tipa 2.

Reference

1. Yordanova A, Eppard E, Kürpig S, et al. Theranostics in nuclear medicine practice. Onco Targets Ther 2017; 10: 4821-28. doi: 10.2147/OTT.S140671


2. Laschinsky C, Herrmann K, Fendler W, et al. Oncological theranostics in nuclear medicine. Radiologie (Heidelb) 2022; 62(10): 875-884. doi: 10.1007/s00117-022-01072-w.


3. Velikyan I. (Radio)Theranostic patient management in oncology exemplified by neuroendocrine neoplasms, prostate cancer, and breast cancer. Pharmaceuticals (Basel) 2020; 13(3): 39. doi: 10.3390/ph13030039


4. Ramage JK, Ahmed A, Ardill J, et al.  Guidelines for the management of gastroenteropancreatic neuroendocrine (including carcinoid) tumours (NETs). Gut 2012; 61: 6–32. doi: 10.1136/gutjnl-2011-300831.


5. Pavel M, Öberg K, Falconi M, et al. Gastroenteropancreatic neuroendocrine neoplasms: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2020; 31(7): 844-860. doi: 10.1016/j.annonc.2020.03.304.


6. Lloyd RV, Osamura RY, Klöppel G, et al. Neoplasms of the neuroendocrine pancreas. In: WHO Classification of Tumours of Endocrine Organs, 4th ed. International Agency for Research on Cancer. Lyon, France, 2017: 209-240. https://publications.iarc.fr


7. Halperin DM, Shen C, Dasari A, et al. Frequency of carcinoid syndrome at neuroendocrine tumour diagnosis: a population-based study. Lancet Oncol 2017; 18: 525–534. doi: 10.1016/S1470-2045(17)30110-9. 


8. Patel YC. Somatostatin and its receptor family. Front Neuroendocrinol 1999; 20: 157–198. doi: 10.1006/frne.1999.0183.


9. Pencharz D, Gnanasegaran G,  Navalkissoor S. Theranostics in neuroendocrine tumours: somatostatin receptor imaging and therapy. Br J Radiol 2018; 91: 20180108. doi: 10.1259/bjr.20180108


10. Dasari A, Shen C, Halperin D, et al. Trends in the incidence, prevalence and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol 2017; 3: 1335-1342. doi: 10.1001/jamaoncol.2017.0589.


11. Fraenkel  M,  Kim M,  Faggiano  A,   et   al.  Incidence  of  gastro- enteropancreatic  neuroendocrine  tumours:  a systematic review of the literature. Endocr Relat Cancer 2014; 21: 153-163. doi: 10.1530/ERC-13-0125.


12. Leoncini  E, Boffetta P, Shafir M, et al. Increased incidence trend  of low-grade  and  high-grade  neuroendocrine   neoplasms.  Endocrine 2017; 58: 368-379. doi: 10.1007/s12020-017-1273-x.


13. Rindi G, Falconi M, Klersy C, et al. TNM Staging of neoplasms of the endocrine pancreas: results from a large international cohort study. J Natl Cancer Inst 2012; 104: 764-777. doi: 10.1093/jnci/djs208.


14. Scarpa A,  Chang DK,  Nones K,  et  al. Whole-genome landscape of pancreatic neuroendocrine  tumours. Nature 2017 ; 543:65-71. doi: 10.1038/nature21063. 


15. Kyriakopoulos G, Mavroeidi V, Chatzellis E, et al. Histopathological, immunohistochemical, genetic and molecular markers of neuroendocrine neoplasms. Ann Transl Med 2018; 6(12): 252. doi: 10.21037/atm.2018.06.27.


16. Erickson LA, Lloyd RV. Practical markers used in the diagnosis of endocrine tumors. Adv Anat Pathol 2004;11: 175-189. doi: 10.1097/01.pap.0000131824.77317.a7.


17. Gould VE, Lee I, Wiedenmann B, et al. Synaptophysin: a novel marker for neurons, certain neuroendocrine cells, and their neoplasms. Hum Pathol 1986; 17: 979-983. doi: 10.1016/s0046-8177(86)80080-6.


18. Klimstra DS, Pitman MB, Hruban RH. An algorithmic approach to the diagnosis of  pancreatic neoplasms. Arch Pathol Lab Med 2009; 133: 454-464. doi: 10.5858/133.3.454.


19. La Rosa S, Sessa F, Uccella S. Mixed neuroendocrinenonneuroendocrine neoplasms (MiNENs): Unifying the concept of a heterogeneous group of neoplasms. Endocr Pathol 2016; 27: 284-311. doi: 10.1007/s12022-016-9432-9.


20. K KontogianniA G NicholsonD Butcher, et al. CD56: a useful tool for the diagnosis of small cell lung carcinomas on biopsies with extensive crush artifact. J Clin Pathol 2005; 58(9): 978-80. doi: 10.1136/jcp.2004.023044.


21. Caplin ME, Buscombe JR, Hilson AJ, et al. Carcinoid tumour. Lancet 1998; 352: 799–805. doi: 10.1016/S0140-6736(98)02286-7.


22. Davis Z, Moertel CG, McIlrath DC. The malignant carcinoid syndrome. Surg Gynecol Obstet 1973; 137: 637–644. PMID: 4730072


23. Reubi, J.C. Somatostatin receptor sst1-sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands. Eur J Nucl Med 2001; 28: 836-846. doi: 10.1007/s002590100541.


24. Krenning EP, Kwekkeboom DJ, Bakker WA, et al. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe] and [123I-tyr]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med 1993; 20(8): 716–731. doi: 10.1007/BF00181765.


25. Krenning EP, Kooij PP, Bakker WH, et al. Radiotherapy with a radiolabelled somatostatin analogue, 111In-DTPA-D-Phe1-octreotide. A case history. Ann NY Acad Sci 1994; 733: 496– 504. doi: 10.1111/j.1749-6632.1994.tb17300.x.


26. Krenning E, Kooij P, Pauwels S, et al. Somatostatin receptor: scintigraphy and radionuclide therapy. Digestion 1996; 57: 57−61. doi: 10.1159/000201398.


27. Otte A, Jermann E, Behe M, et al. DOTATOC: a powerful new tool for receptor-mediated radionuclide therapy. Eur J Nucl Med 1997; 24: 792−795.  doi: 10.1007/BF00879669.


28. Otte A, Mueller-Brand J, Dellas S, et al. 90Yttrium labelled somatostatin- analogue for cancer treatment. Lancet 1998; 351: 417−418. doi: 10.1016/s0140-6736(05)78355-0.


29. Hofmann M, Maecke H, Borner R, et al. Biokinetics and imaging with the somatostatin receptor PET radioligand 68Ga-DOTA-TOC: preliminary data. Eur J Nucl Med 2001; 12: 1751−1757. doi: 10.1007/s002590100639. 


30. Antunes P, Ginji M, Zhang H, et al. Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals? Eur J Nucl Med Mol Imaging 2007; 34: 982−993. doi: 10.1007/s00259-006-0317-x.


31. Smith-Jones P, Bischof C, Leimer M, et al. “MAURITIUS”: a novel tumour diagnostic and therapeutic somatostatin analogue. Endocrinology 1999; 140: 5136−5148. doi.org/10.1210/endo.140.11.7126


32. Maina T, Nock B, Nikolopoulou A, et al. [99mTc]demotate, a new 99mTc-based [Tyr3]octreotate analogue for the detection of somatostatin receptor-positive tumours: synthesis and preclinical results. Eur J Nucl Med 2002; 29: 742−753. doi: 10.1007/s00259-002-0782-9.


33. Chiti A, Fanti S, Savelli G, et al. Comparison of somatostatin receptor imaging, computed tomography and ultrasound in the clinical management of neuroendocrine gastro-entero-pancreatic tumours. Eur J Nucl Med 1998; 25(10): 1396-1403. doi: 10.1007/s002590050314.


34. Maina T, Nock B, Nikolopoulou A, et al. [99mTc]demotate, a new 99mTc-based [Tyr3]octreotate analogue for the detection of somatostatin receptor-positive tumours: synthesis and preclinical results. Eur J Nucl Med 2002; 29: 742−753. doi: 10.1007/s00259-002-0782-9.


35. De Jong M, Bernard B, De Bruin E, et al. Internalization of radiolabelled [DTPA0]octreotide and [DOTA0,Tyr3]octreotide:peptides for somatostatin receptor-targeted scintigraphy and radionuclide therapy. Nucl Med Commun 1998; 19: 283−288. doi: 10.1097/00006231-199803000-00013.


36. Wild D, Schmitt JS, Ginj M, et al. DOTA-NOC, a high-affinity ligand of somatostatin receptor subtypes 2, 3 and 5 for labeling with various radiometals. Eur J Nucl Med Mol Imag 2003; 30: 1338−1347. doi: 10.1007/s00259-003-1255-5.


37. Decristoforo C, Mather S, Cholewinski W, et al. 99mTc- EDDA/HYNIC-TOC: a new 99mTc-labelled radiopharmaceutical for imaging somatostatin receptor-positive tumours: first clinical results and intra-patient comparison with 111In-labelled octreotide derivates. Eur J Nucl Med 2000; 27: 1318−1325. doi: 10.1007/s002590000289.


38. Gabriel M, M¨uhllechner P, Decristoforo C, et al. 99mTc-EDDA/HYNIC- Tyr3-octreotide for staging and follow-up of patients with neuroendocrine gastro-entero-pancreatic tumours. QJ Nucl Med Mol Imag 2005; 49:237−244. PMID: 16172569 


39. Gabriel M, Decristoforo C, Donnemiller E, et al. An intrapatient comparison of 99mTc-EDDA/HYNIC-TOC with 111In-DTPAoctreotide for diagnosis of somatostatin receptor-expressing tumours. J Nucl Med 2003; 44: 708−716. PMID: 12732671


40. Hubalewska-Dydejczyk A, Fröss-Baron K, Mikolajczak R, et al. 99mTc-EDDA/HYNIC-octreotate scintigraphy, an efficient method for the detection and staging of carcinoid tumours: results of 3 years' experience. Eur J Nucl Med Mol Imaging 2006; 33: 1123–1133. doi: 10.1007/s00259-006-0113-7.


41. Gabriel M, Muehllechner P, Decristoforo C, et al. 99mTc-EDDA/HYNIC-Tyr(3)octreotide for staging and follow-up of patients with neuroendocrine gastroentero-pancreatic tumors. Q J Nucl Med Mol Imaging 2005; 49: 237–244. PMID: 16172569


42. Kwekkeboom DJ, Kam BL, van Essen M, et al. Somatostatin receptor-based imaging and therapy of gastroenteropancreatic neuroendocrine tumors. Endocr Relat Cancer 2010; 17: 53–73. doi: 10.1677/ERC-09-0078.


43. Ambrosini V, Campana D, Tomassetti P, Fanti S. 68Ga-labelled peptides for diagnosis of gastroenteropancreatic net. Eur J Nucl Med Mol Imaging 2012, 39: 52–60. doi: 10.1007/s00259-011-1989-4.


44. Virgolini I, Raderer M, Kurtaran A, et al. Vasoactive intestinal peptide (VIP) receptor imaging for the localisation of intestinal adenocarcinomas and endocrine tumours. N Engl J Med 1994; 331:1116−1121. doi: 10.1056/NEJM199410273311703.


45. Virgolini I, Kurtaran A, Raderer M, et al. Vasoactive intestinal peptide receptor scintigraphy. J Nucl Med 1995; 36: 1732−1739. PMID: 7562036


46.  Virgolini I, Kurtaran A, Leimer M, et al. Location of a VIPoma by 123iodine-vasoactive intestinal peptide scintigraphy. J Nucl Med 1998; 39: 1575−1579. PMID: 9744346


47. Scopinaro F, Varvarigou A, Ussof W, et al. Technetium labelled bombesin-like peptide: preliminary report on breast cancer uptake in patients. Cancer Biother Radiopharm 2002; 17: 327−335. doi: 10.1089/10849780260179297.


48. Breeman W, de Jong M, Erion J, et al. Preclinical comparison of 111In-labelled DTPA-or DOTA-bombesin analogues for receptor-targeted scintigraphy and radionuclide therapy. J Nucl Med 2002; 43:1650−1656. PMID: 12468515


49. van Hagen P, Breeman W, Reubi JC, et al. Visualization of the thymus by substance P receptor scintigraphy in man. Eur J Nucl Med 1996; 23: 1508−1513. doi: 10.1007/BF01254476.


50. Behr T, Behe M, Angerstein C, et al. Cholecystokinin-B/gastrin receptor binding peptides: preclinical development and evaluation of their diagnostic and therapeutic potential. Clin Cancer Res 1999; 5: 3124–3138. PMID: 10541353


51. Behr T, Behe M. Cholecystokinin-B/gastrin receptor-targeting peptides for staging and therapy of medullary thyroid cancer and other cholecystokinin-B receptor-expressing malignancies. Semin Nucl Med 2002; 32: 97–109. doi: 10.1053/snuc.2002.31028.


52. Garcia-Garayoa E, Allemann-Tannahill L, Blauenstein P, et al. In vitro and in vivo evaluation of new radiolabelled neurotensin(8-13) analogues with high affinity for NT1 receptors. Nucl Med Biol 2001; 28: 75−84. doi: 10.1016/s0969-8051(00)00190-6.


53. Buchegger F, Bonvin F, Kosinski M, et al. Radiolabelled neurotensin analogue, 99Tc-NT-XI, evaluated in ductal pancreatic adenocarcinoma patients. J Nucl Med 2003; 44: 1649−1654. PMID: 14530481


 


54. Wang LF, Lin L, Wang MJ, et al. The therapeutic efficacy of 177Lu-DOTATATE/ DOTATOC in advanced neuroendocrine tumors. A meta-analysis. Medicine 2020; 99: 10. doi: 10.1097/MD.0000000000019304.

Objavljeno
2025/12/19
Rubrika
Pregledni rad / Review article