Dizajn pirazolskih derivata vonoprazana kao potencijalnih reverzibilnih inhibitora protonske pumpe: in silico studija molekulskog dokinga
Sažetak
Uvod: Uprkos činjenici da se inhibitori protonske pumpe široko koriste za inhibiciju lučenja želudačne kiseline, nedavne studije su otkrile određene dugoročne neželjene efekte. Zbog kisele sredine u želucu, veliki je izazov dizajnirati nove kompetitivne inhibitore protonske pumpe sa snažnijom inhibicijom lučenja želudačne kiseline u poređenju sa konvencionalnim lekovima.
Cilj rada: Cilj ove in silico studije je bio da proceni potencijal odabranih derivata vonoprazana za inhibiciju protonske pumpe primenom studije molekulskog dokinga.
Metode: Dizajn pirazolskih derivata vonoprazana zasnovan na distribuciji sproveden je optimizacijom distribucionog koeficijenta na fiziološkoj pH vrednosti i pKa vrednosti. Studija molekulskog dokinga je sprovedena korišćenjem proteinske strukture protonske pumpe (PDB ID: 5YLU) u kompleksu sa vonoprazanom u softveru AutoDock Vina.
Rezultati: Prema procenjenim vrednostima doking skora, derivati 11, 21 i 25 pokazali su najveći afinitet prema protonskoj pumpi. Jedinjenja 3, 13, 14, 16, 17, 20, 22 i 23 formirala su najveći broj ključnih vezujućih interakcija sa aktivnim mestom protonske pumpe.
Zaključak: Na osnovu dobijenih parametara vezivanja, može se zaključiti da su derivati 14 i 23 nagradili najveći broj značajnih vezujućih interakcija (16, odnosno 15) uz istovremeno ostvarene niže vrednosti doking skora (-9.2 i -9.3 kcal/mol) u poređenju sa vonoprazanom kao kontrolom vezivanja. Na osnovu kriterijuma za procenu vezivanja, ova dva jedinjenja predstavljaju molekule sa najsnažnijim inhibitornim potencijalom prema protonskoj pumpi.
Reference
1. Inatomi N, Matsukawa J, Sakurai Y et al. Potassium-competitive acid blockers: Advanced therapeutic option for acid-related diseases. Pharmacol Ther. 2016;168:12-22.
https://doi.org/10.1016/j.pharmthera.2016.08.001
2. Oshima T, Miwa H. Potent Potassium-competitive Acid Blockers: A New Era for the Treatment of Acid-related Diseases. J Neurogastroenterol Motil. 2018;24(3):334-344.
https://doi.org/10.5056/jnm18029
3. Barocelli E, Ballabeni V. Histamine in the control of gastric acid secretion: a topic review. Pharmacol Res. 2003;47(4):299-304.
https://doi.org/10.1016/S1043-6618(03)00009-4
4. Sachs G, Shin JM, Howden CW. Review article: the clinical pharmacology of proton pump inhibitors. Aliment Pharmacol Ther. 2006;23(2):2-8.
https://doi.org/10.1111/j.1365-2036.2006.02943.x
5. Castellana C, Pecere S, Furnari M et al. Side effects of long-term use of proton pump inhibitors: practical considerations. Pol Arch Intern Med. 2021;131(6):541-549.
https://doi.org/10.20452/pamw.15997
6. Son M, Park IS, Kim S et al. Novel Potassium-Competitive Acid Blocker, Tegoprazan, Protects Against Colitis by Improving Gut Barrier Function. Front Immunol. 2022;13: 870817.
https://doi.org/10.3389/fimmu.2022.870817
7. Hunt RH, Scarpignato C. Potassium-Competitive Acid Blockers (P-CABs): Are They Finally Ready for Prime Time in Acid-Related Disease? Clin Transl Gastroenterol. 2015;6(10):e119.
https://doi.org/10.1038/ctg.2015.39
8. Shin JM, Cho YM, Sachs G. Chemistry of covalent inhibition of the gastric (H+, K+)-ATPase by proton pump inhibitors. J Am Chem Soc. 2004;126(25):7800-7811.
https://doi.org/10.1021/ja049607w
9. Strand DS, Kim D, Peura DA. 25 Years of Proton Pump Inhibitors: A Comprehensive Review. Gut Liver. 2017;11(1):27-37.
https://doi.org/10.5009/gnl15502
10. Chey WD, Mody RR, Izat E. Patient and physician satisfaction with proton pump inhibitors (PPIs): are there opportunities for improvement? Dig Dis Sci. 2010;55(12):3415-3422.
https://doi.org/10.1007/s10620-010-1209-2
11. Tanaka S, Morita M, Yamagishi T et al. Structural Basis for Binding of Potassium-Competitive Acid Blockers to the Gastric Proton Pump. J Med Chem. 2022;65(11):7843-7853.
https://doi.org/10.1021/acs.jmedchem.2c00338
12. Abe K, Irie K, Nakanishi H et al. Crystal structures of the gastric proton pump. Nature. 2018;556(7700):214-218.
https://doi.org/10.1038/s41586-018-0003-8
13. Abe K, Yamamoto K, Irie K et al. Gastric proton pump with two occluded K+ engineered with sodium pump-mimetic mutations. Nat Commun. 2021;12(1):5709.
https://doi.org/10.1038/s41467-021-26024-1
14. Lee JS, Cho JY, Song H et al. Revaprazan, a novel acid pump antagonist, exerts anti-inflammatory action against Helicobacter pylori-induced COX-2 expression by inactivating Akt signaling. J Clin Biochem Nutr. 2012;51(2):77-83.
https://doi.org/10.3164/jcbn.11-94
15. Garnock-Jones KP. Vonoprazan: first global approval. Drugs. 2015;75(4):439-443.
https://doi.org/10.1007/s40265-015-0368-z
16. Sugano K. Vonoprazan fumarate, a novel potassium-competitive acid blocker, in the management of gastroesophageal reflux disease: safety and clinical evidence to date. Therap Adv Gastroenterol. 2018;11:1756283X17745776.
https://doi.org/10.1177/1756283X17745776
17. Takahashi N, Take Y. Tegoprazan, a Novel Potassium-Competitive Acid Blocker to Control Gastric Acid Secretion and Motility. J Pharmacol Exp Ther. 2018;364(2):275-286.
https://doi.org/10.1124/jpet.117.244202
18. Akazawa Y, Fukuda D, Fukuda Y. Vonoprazan-based therapy for Helicobacter pylori eradication: experience and clinical evidence. Therap Adv Gastroenterol. 2016;9(6):845-852.
https://doi.org/10.1177/1756283X16668093
19. Otake K, Sakurai Y, Nishida H et al. Characteristics of the Novel Potassium-Competitive Acid Blocker Vonoprazan Fumarate (TAK-438). Adv Ther. 2016;33(7):1140-1157.
https://doi.org/10.1007/s12325-016-0345-2
20. Wang MS, Gong Y, Zhuo LS et al. Distribution- and Metabolism-Based Drug Discovery: A Potassium-Competitive Acid Blocker as a Proof of Concept. Research (Wash D C). 2022;2022:9852518.
https://doi.org/10.34133/2022/9852518
21. Marvinsketch, 20107. DISPLAYING and characterizing chemical structures, substructures, and reactions, Marvin 17.1.2. ChemAxon.
22. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7(1):1-13.
https://doi.org/10.1038/srep42717
23. Lipinski CA, Lombardo F, Dominy BW et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46:3-26.
https://doi.org/10.1016/s0169-409x(00)00129-0
24. Ghose AK, Viswanadhan VN, Wendoloski JJ. Prediction of Hydrophobic (Lipophilic) Properties of Small Organic Molecules Using Fragmental Methods: An Analysis of ALOGP and CLOGP Methods. J Phys Chem A. 1998;102:3762-3772.
https://doi.org/10.1021/jp980230o
25. Egan WJ, Merz Jr KM, Baldwin JJ. Prediction of drug absorption using multivariate statistics. J Med Chem. 2000;43:3867-3877.
https://doi.org/10.1021/jm000292e
26. Veber DF, Johnson SR, Cheng HY et al. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45:2615-2623.
https://doi.org/10.1021/jm020017n
27. Muegge I, Heald SL, Brittelli D. Simple selection criteria for drug-like chemical matter. J Med Chem. 2001;44:1841-1846.
https://doi.org/10.1021/jm015507e
28. Daina A, Zoete V. A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. Chem Med Chem 2016;11:1117–1121.
https://doi.org/10.1002/cmdc.201600182
29. Pires DE, Blundell TL, Ascher DB. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J Med Chem. 2015;58(9):4066-4072.
https://doi.org/10.1021/acs.jmedchem.5b00104
30. Buntrock RE. ChemOffice Ultra 7.0. J Chem Inf Comput Sci. 2002;42(6):1505-1506.
https://doi.org/10.1021/ci025575p
31. Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785-2791.
https://doi.org/10.1002/jcc.21256
32. Biovia DS, Berman HM, Westbrook J, et al. Dassault Systèmes BIOVIA, Discovery Studio Visualizer, V. 17.2, San Diego: Dassault Systèmes. J Chem Phys. 2000;10:21-9991.
33. Trott O, Olson AJ. AutoDockVina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31 (2):455-461.
https://doi.org/10.1002/jcc.21334
34. Schrödinger L, DeLano W. The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC.
35. Nishida H, Arikawa Y, Hirase K et al. Identification of a novel fluoropyrrole derivative as a potassium-competitive acid blocker with long duration of action. Bioorg Med Chem. 2017;25(13):3298-3314.
https://doi.org/10.1016/j.bmc.2017.04.014
36. Comer J. High-throughput measurement of log D and pKa. Drug Bioavailability: Estimation of Solubility, Permeability, Absorption and Bioavailability. 2003. pp. 21–45.
https://doi.org/10.1002/3527601473.ch2
37. baba Muh'd M, Uzairu, A, Shallangwa, GA et al. Molecular docking and quantitative structure-activity relationship study of anti-ulcer activity of quinazolinone derivatives. J. King Saud Univ Sci. 2020;32(1):657-666.
https://doi.org/10.1016/j.jksus.2018.10.003
38. Noor A, Qazi NG, Nadeem H et al. Synthesis, characterization, anti-ulcer action and molecular docking evaluation of novel benzimidazole-pyrazole hybrids. Chem Cent J. 2017;11(1):85.
https://doi.org/10.1186/s13065-017-0314-0
39. Andrews PR, Craik DJ, Martin JL. Functional group contributions to drug-receptor interactions. J Med Chem. 1984;27(12):1648-1657.
https://doi.org/10.1021/jm00378a021
40. Hopkins AL, Keserü GM, Leeson PD et al. The role of ligand efficiency metrics in drug discovery. Nat Rev Drug Discov.2014;13(2):105-121.
