SINTEZA I KARAKTERIZACIJA ALGINATNIH MIKROČESTICA SA ALFA-TOKOFEROLOM
Sažetak
Uvod. Tehnika mikroinkapsulacije se može koristiti za zaštitu alfa-tokoferola od degradacije u nepovoljnoj sredini, kao i za poboljšanje bioraspoloživosti i produžetak roka trajanja vitamina E. Metode. Napravljeno je ukupno četiri test formulacije kalcijum-alginatnih mikročestica sa različitim sadržajem alfa-tokoferola metodom eksternog jonotropnog geliranja. Odnos vitamin E/natrijum alginat bio je 1:1 i 1:2. Sve alginatne čestice okarakterisane su određivanjem mase, veličine čestica, procentnog sadržaja alfa-tokoferola, efikasnosti inkapsulacije i sposobnosti bubrenja. Rezultati. Nakon sušenja dobijene su čestice sfernog oblika, veličine 500 do 1000 µm, što ih svrstava u kategoriju mikročestica. Veličina i stepen bubrenja se nisu značajno menjali u 0,1 M HCl, dok su u baznim uslovima fosfatnog pufera pH 6,8 i 7,4 bili povećani. Sadržaj inkapsuliranog vitamina E bio je sličan u svim formulacijama (0,30±0,010 – 0,60±0,021mg/mL). Kapaciteti punjenja se kretao u opsegu 10±0,11% I 20,45±0,22%, dok je procentualna efikasnost inkapsulacije bila između 18,94±0,32 i 31,91±0,41.
Zaključak. Sve četiri formulacije su pokazale očekivano ponašanje u različitim medijumima, koji su simulirali gastrointestinalne tečnosti in vivo (0,1 M HCl, fosfatni pufer pH 6,8 i 7,4): gastrorezistenciju i porast veličine i sposobnosti bubrenja u intestinalnim tečnostima. Pokazano je da su optimalni uslovi za inkapsulaciju alfa-tokoferola, sa najvećim kapacitetom punjenja i stepenom inkapsulacije, postignuti korišćenjem 1% natrijum alginata, 2% kalcijum hlorida i odnosa vitamin E/polimer 1:1.
Reference
1. Singh J, Kaur K. & Kumar P. Optimizing microencapsulation of α-tocopherol with pectin and sodium alginate. J Food Sci Technol 2018; 55: 3625–31.
2. Ehterami A, Salehi M, Farzamfar S et al. Chitosan/alginate hydrogels containing Alpha-tocopherol for wound healing in rat model. Journal of Drug Delivery Science and Technology 2019; 51: 204–13.
3. Bansode SS, Banarjee SK, Gaikwad DD, Jadhav SL, Thorat RM. Microencapsulation: a review. Int J Pharm Sci Rev Res 2010; 1: 38–43.
4. Trojanowska A, Giamberini M, Tsibranska I et al. Microencapsulation in food chemistry. Journal of Membrane Science and Research 2017; 3: 265-071.
5. Abasalizadeh, F, Moghaddam, SV, Alizadeh E et al. Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. J Biol Eng 2020; 14: 1-22.
6. Goh CH, Heng PW, Chan LW. Alginates as a useful natural polymer for microencapsulation and therapeutic applications. Carbohydr Polym 2012; 88: 1–12.
7. Hariyadi DM, Islam N. Current Status of Alginate in Drug Delivery. Adv Pharmacol Pharm Sci. 2020; 8886095.
8. Bhujbal SV, de Vos P, and Niclou SP. Drug and cell encapsulation: alternative delivery options for the treatment of malignant brain tumors. Advanced Drug Delivery Reviews 2014; 67-68: 142–53.
9. Gurruchaga H, Saenz del Burgo L, Ciriza J, Orive G, Hernandez RM, and Pedraz JL. Advances in cell encapsulation technology and its application in drug delivery. Expert Opinion on Drug Delivery 2015; 12(8): 1251–67.
10. Yoshida K and Onoe H. Functionalized core-shell hydrogel microsprings by anisotropic gelation with bevel-tip capillary. Scientific Reports 2017; 7(1): 1–9.
11. Jana S, Kumar Sen K, and Gandhi A. Alginate based nanocarriers for drug delivery applications. Current Pharmaceutical Design. 2016; 22(22): 3399–410.
12. Pestovsky YS and Martínez-Antonio A. The synthesis of alginate microparticles and nanoparticles. Drug Des Int Prop Int J 2019; 3(1): 293-327.
13. Čalija B, Cekić N, Savić S, Krajišnik D, Daniels R, Milić J. An Investigation of formulation factors affecting feasibility of alginate-chitosan microparticles for oral delivery of naproxen. Arch Pharm Res 2011; 34(6): 919-29.
14. Nagamalleswari G, Krishna KS, Abhinandana P, Ramara N, Ravikumar M, Umashankar MS. Estimation of tocopherol (vit-e) content in different edible oils before and after heating. International Journal of Pharmaceutical Research 2019; 11(3): 75-8.
15. Čalija B, Milić J, Cekić N, Krajišnik D, Daniels R, Savić S. Chitosan oligosaccharide as prospective cross-linking agent for naproxen-loaded Ca-alginate microparticles with improved pH sensitivity. Drug Development and Industrial Pharmacy, 2013; 39(1): 77–88.
16. Hoad C, Rayment P, Cox E et al. Investigation of alginate beads for gastro-intestinal functionality, part 2: In vivo characterisation. Food Hydrocolloids 2009; 23(3): 833–39.
17. Gómez-Mascaraque L, Martínez-Sanz M, Hogan S, López-Rubio A, Brodkorb A. Nano- and microstructural evolution of alginate beads in simulated gastrointestinal fluids. Impact of M/G ratio, molecular weight and pH. Carbohydrate Polymers 2019; 223; 115-21.
18. Chuang JJ, Huang YY, Lo SH et al. Effects of pH on the shape of alginate particles and its release behavior. International Journal of Polymer Science 2017; 1: 1-9.
19. Strobel SA, Scher HB, Nitin N, and Jeoh T. In situ cross-linking of alginate during spray-drying to microencapsulate lipids in powder. Food Hydrocolloids 2016; 58: 141–9.
20. Somchue W, Sermsri W, Shiowatana J, Siripinyanond A. Encapsulation of a-tocopherol in protein-based delivery particles. Food Research International 2009; 42: 909–14.
21. Saez V, Souza IDL, Mansur CRE. Lipid nanoparticles (SLN & NLC) for delivery of vitamin E: a comprehensive review. Int J Cosmet Sci. 2018; 40(2): 103-16.
