Imunomodulacijska svojstva TGF-β kod bolesnika sa imunskom trombocitopenijom

  • Miloš S Kostić Univerzitet u Nišu, Medicinski fakultet, Katedra za mikrobiologiju i imunologiju, Bul. dr Zorana Đinđića 81, 18000 Niš, Srbija

Sažetak


Novi koncept patogeneze imunske trombocitopenije (ITP) fokusiran je na CD4+ T ćelije, koje se trenutno smatraju krucijalnim u stimulisanju B ćelija na produkciju anti-trombocitnih antitela. U ovoj in vitro studiji, istraživali smo profil CD4+ T ćelija obolelih od ITP i imunomodulacijske svojstva TGF-β. CD4+ T ćelije su izolovane iz mononuklearnih ćelija periferne krvi zdravih ispitanika i obolelih od ITP. Nakon kratkotrajne inkubacije, određeni su nivoi osnovnih citokina T pomoćničkih ćelija kao i broj T regulatornih ćelija (Treg). Imunomodulacijska svojstva TGF-β analizirana su praćenjem izmena u produkciji citokina IFNγ, IL-4, IL-10, IL-17 i IL-2 kao i učestalosti Treg, nakon šestodnevnog tretmana. Oboleli od ITP imali su smanjen nivo IL-4 i IL-10, povećan nivo IL-17 kao i povišen odnos IFNγ/IL-4 i IL-17/IL-10. Zanimljivo je da u šestodnevnim CD4+ T ćelijskim kulturama bez TGF-β tretmana nisu evidentirane statistički značajne razlike u nivou citokina između kontrolne i ITP grupe, osim IL-10 čiji nivo je bio značajno niži. U ITP grupi nakon TGF-β tretmana, registrovano je značajno povećanje IL-10 kao i smanjenje odnosa IL-17/IL-10 u poređenju sa ITP grupom koja nije tretirana na ovaj način. Takođe, primećena je povećana učestalost Treg. Rezultati naše studije sugerišu da oboleli od ITP pokazuju aberantnu Th1 i Th17 polarizaciju celularnog imunskog odgovora što se može korigovati stimulisanom TGF-β signalizacijom. Međutim, ispostavlja se da dugotrajna kultivacija CD4+ T ćelija nije pogodan eksperimentalni model za proučavanje imunomodulatornih svojstava u ITP usled dinamičkih fluktuacija fenotipa ovih ćelija u ex vivo uslovima.

Reference

Nugent D, McMillan R, Nichol JL, Slichter SJ. Pathogenesis of chronic immune thrombocytopenia: increased platelet destruction and/or decreased platelet production. Br J Haematol 2009;146(6):585-96.

McMillan R. Antiplatelet antibodies in chronic adult immune thrombocytopenic purpura: assays and epitopes. J Pediatr Hematol Oncol 2003;25 Suppl 1:S57-61.

Roark JH, Bussel JB, Cines DB, Siegel DL. Genetic analysis of autoantibodies in idiopathic thrombocytopenic purpura reveals evidence of clonal expansion and somatic mutation. Blood 2002;100(4):1388-98.

Sukati H, Watson HG, Urbaniak SJ, Barker RN. Mapping helper T-cell epitopes on platelet membrane glycoprotein IIIa in chronic autoimmune thrombocytopenic purpura. Blood 2007;109(10):4528-38.

Semple JW, Freedman J. Increased antiplatelet T helper lymphocyte reactivity in patients with autoimmune thrombocytopenia. Blood 1991;78(10):2619-25.

Shan NN, Zhu XJ, Peng J, Qin P, Zhuang XW, Wang HC, et al. Interleukin 18 and interleukin 18 binding protein in patients with idiopathic thrombocytopenic purpura. Br J Haematol 2009;144(5):755-61.

Yao R, Lin Y, Li Q, Zhou X, Pan X, Bao Y, et al. Downregulation of T-bet/GATA-3 ratio induced by IL-11 treatment is responsible for Th1/Th2 balance restoration in human immune thrombocytopenic purpura (ITP). J Thromb Thrombolysis 2014;38(2):183-9.

Wang T, Zhao H, Ren H, Guo J, Xu M, Yang R, et al. Type 1 and type 2 T-cell profiles in idiopathic thrombocytopenic purpura. Haematologica 2005;90(7):914-23.

Takahashi N, Saitoh T, Gotoh N, Nitta Y, Alkebsi L, Kasamatsu T, et al. The cytokine polymorphisms affecting Th1/Th2 increase the susceptibility to, and severity of, chronic ITP. BMC Immunol 2017;18(1):26.

Panitsas FP, Theodoropoulou M, Kouraklis A, Karakantza M, Theodorou GL, Zoumbos NC, et al. Adult chronic idiopathic thrombocytopenic purpura (ITP) is the manifestation of a type-1 polarized immune response. Blood 2004;103(7):2645-7.

Li F, Zou S, Cheng Y. Elevated Expression of IL-17 and IL-23 in Patients with Immune Thrombocytopenic Purpura. Blood 2008;112:4537.

Rocha AM, Souza C, Rocha GA, de Melo FF, Clementino NC, Marino MC, et al. The levels of IL-17A and of the cytokines involved in Th17 cell commitment are increased in patients with chronic immune thrombocytopenia. Haematologica 2011;96(10):1560-4.

Ye X, Zhang L, Wang H, Chen Y, Zhang W, Zhu R, et al. The role of IL-23/Th17 pathway in patients with primary immune thrombocytopenia. PLoS One 2015;10(1):e0117704.

Hua F, Ji L, Zhan Y, Li F, Zou S, Chen L, et al. Aberrant frequency of IL-10-producing B cells and its association with Treg/Th17 in adult primary immune thrombocytopenia patients. Biomed Res Int 2014;2014:571302.

Liu B, Zhao H, Poon MC, Han Z, Gu D, Xu M, et al. Abnormality of CD4(+)CD25(+) regulatory T cells in idiopathic thrombocytopenic purpura. Eur J Haematol 2007;78(2):139-43.

Sakakura M, Wada H, Tawara I, Nobori T, Sugiyama T, Sagawa N, et al. Reduced Cd4+Cd25+ T cells in patients with idiopathic thrombocytopenic purpura. Thromb Res 2007;120(2):187-93.

Bao W, Bussel JB, Heck S, He W, Karpoff M, Boulad N, et al. Improved regulatory T-cell activity in patients with chronic immune thrombocytopenia treated with thrombopoietic agents. Blood 2010;116(22):4639-45.

Andersson PO, Stockelberg D, Jacobsson S, Wadenvik H. A transforming growth factor-beta1-mediated bystander immune suppression could be associated with remission of chronic idiopathic thrombocytopenic purpura. Ann Hematol 2000;79(9):507-513.

Li F, Ji L, Wang W, Hua F, Zhan Y, Zou S, et al. Insufficient secretion of IL-10 by Tregs compromised its control on over-activated CD4+ T effector cells in newly diagnosed adult immune thrombocytopenia patients. Immunol Res 2015;61(3):269-80.

Wang JD, Chang TK, Lin HK, Huang FL, Wang CJ, Lee HJ. Reduced expression of transforming growth factor-β1 and correlated elevation of interleukin-17 and interferon-γ in pediatric patients with chronic primary immune thrombocytopenia (ITP). Pediatr Blood Cancer 2011;57(4):636-40.

Zhou L, Lopes JE, Chong MM, Ivanov II, Min R, Victora GD, et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 2008;453(7192):236-40.

Ji L, Zhan Y, Hua F, Li F, Zou S, Wang W, et al. The Ratio of Treg/Th17 Cells Correlates with the Disease Activity of Primary Immune Thrombocytopenia. PLoS One 2012;7(12):e50909.

Downs-Canner S, Berkey S, Delgoffe GM, Edwards RP, Curiel T, Odunsi K, et al. Suppressive IL-17A+Foxp3+ and ex-Th17 IL-17A-Foxp3+ Treg cells are a source of tumour-associated Treg cells. Nat Commun 2017;8:14649.

Rodeghiero F, Stasi R, Gernsheimer T, Michel M, Provan D, Arnold DM, et al. Standardization of terminology, definitions and outcome criteria in immune thrombocytopenic purpura of adults and children: report from an international working group. Blood 2009;113(11):2386-93.

Swinkels M, Rijkers M, Voorberg J, Vidarsson G, Leebeek FWG, Jansen AJG. Emerging Concepts in Immune Thrombocytopenia. Front Immunol 2018;9:880.

Ogawara H, Handa H, Morita K, Hayakawa M, Kojima J, Amagai H, et al. High Th1/Th2 ratio in patients with chronic idiopathic thrombocytopenic purpura. Eur J Haematol 2003;71(4):283-8.

Guo C, Chu X, Shi Y, He W, Li L, Wang L, et al. Correction of Th1-dominant cytokine profiles by high-dose dexamethasone in patients with chronic idiopathic thrombocytopenic purpura. J Clin Immunol 2007;27(6):557-62.

Li J, Wang Z, Hu S, Zhao X, Cao L. Correction of abnormal T cell subsets by high-dose dexamethasone in patients with chronic idiopathic thrombocytopenic purpura. Immunol Lett 2013;154(1-2):42-8.

Handin RI, Stossel TP. Effect of corticosteroid therapy on the phagocytosis of antibody-coated platelets by human leukocytes. Blood 1978;51(5):771-9.

Fujisawa K, Tani P, Piro L, McMillan R. The effect of therapy on platelet-associated autoantibody in chronic immune thrombocytopenic purpura. Blood 1993;81(11):2872-7.

Houwerzijl EJ, Blom NR, van der Want JJ, Esselink MT, Koornstra JJ, Smit JW, et al. Ultrastructural study shows morphologic features of apoptosis and para-apoptosis in megakaryocytes from patients with idiopathic thrombocytopenic purpura. Blood 2004;103(2):500-6.

Vandevyver S, Dejager L, Tuckermann J, Libert C. New Insights into the Anti-inflammatory Mechanisms of Glucocorticoids: An Emerging Role for Glucocorticoid-Receptor-Mediated Transactivation. Endocrinology 2013;154(3):993-1007.

Butch AW, Pesando J, Levine AD, McKearn JP, Nahm MH. Cytokine production by T helper cell subpopulations during prolonged in vitro stimulation. Immunol Lett 1991;27(2):85-93.

Shan NN, Ji XB, Wang X, Li Y, Liu X, Zhu XJ, et al. In vitro recovery of Th1/Th2 balance in PBMCs from patients with immune thrombocytopenia through the actions of IL-18BPa/Fc. Thromb Res 2011;128(6):e119-24.

Ge F, Zhang Z, Hou J, Cao F, Zhang Y, Wang P, et al. Granulocyte colony-stimulating factor decreases the Th1/Th2 ratio in peripheral blood mononuclear cells from patients with chronic immune thrombocytopenic purpura in vitro. Thromb Res 2016;148:76-84.

Yu S, Liu C, Li L, Tian T, Wang M, Hu Y, et al. Inactivation of Notch signaling reverses the Th17/Treg imbalance in cells from patients with immune thrombocytopenia. Lab Invest 2015;95(2):157-67.

Gagliani N, Amezcua Vesely MC, Iseppon A, Brockmann L, Xu H, Palm NW, et al. Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature 2015;523(7559):221-5.

Zhou L, Xu F, Chang C, Tao Y, Song L, Li X. Interleukin-17-producing CD4+ T lymphocytes are increased in patients with primary immune thrombocytopenia. Blood Coagul Fibrinolysis 2016;27(3):301-7.

Mucida D, Park Y, Kim G, Turovskaya O, Scott I, Kronenberg M, et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 2007;317(5835):256-60.

Lu L, Ma J, Li Z, Lan Q, Chen M, Liu Y, et al. All-trans retinoic acid promotes TGF-β-induced Tregs via histone modification but not DNA demethylation on Foxp3 gene locus. PLoS One 2011;6(9):e24590.

Mucida D, Pino-Lagos K, Kim G, Nowak E, Benson MJ, Kronenberg M, et al. Retinoic acid can directly promote TGF-beta-mediated Foxp3(+) Treg cell conversion of naive T cells. Immunity 2009;30(4):471-2.

Feng Q, Xu M, Yu YY, Hou Y, Mi X, Sun YX, et al. High-dose dexamethasone or all-trans-retinoic acid restores the balance of macrophages towards M2 in immune thrombocytopenia. J Thromb Haemost 2017;15(9):1845-1858.

Zhang F, Wang H, Wang X, Jiang G, Liu H, Zhang G, et al. TGF-β induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype. Oncotarget 2016;7(32):52294-52306.

Dai L, Zhang R, Wang Z, He Y, Bai X, Zhu M, et al. Efficacy of immunomodulatory therapy with all-trans retinoid acid in adult patients with chronic immune thrombocytopenia. Thromb Res 2016;140:73-80.

Objavljeno
2020/08/27
Rubrika
Originalni rad