IN SILICO FIZIČKO-HEMIJSKA, FARMAKOKINETIČKA I TOKSIKOLOŠKA ISPITIVANJA INHIBITORA 5-LIPOKSIGENAZE

  • Ana Marković KUniverzitet u NišuMedicinski fakultet NišKatedra Farmacija
Ključne reči: 5-lipoksigenaza, in silico studija, fizičko-hemijske osobine, farmakokinetičke osobine, toksikološke osobine

Sažetak


Enzim 5-lipoksigenaza (5-LO) predstavlja važan enzim koji učestvuje u proizvodnji leukotriena, metabolita arahidonske kiseline pod čijim direktnim uticajem dolazi do razvoja reakcije inflamacije koja je povezana sa brojnim patofiziološkim stanjima. Stoga, otkrivanje i razvoj selektivnih 5-LO inhibitora za primenu u terapiji predstavljaju predmet istraživanja koja se trenutno sprovode. Cilj ove studije bio je da se najpre da pregled literature u vezi sa najaktivnijim sintetskim 5-LO inhibitorima (sa IC50 vrednostima manjim od 1 µM), usmeren prvenstveno na njihovu hemijsku strukturu, a potom predstave rezultati in silico studije njihovih osnovnih fizičko-hemijskih, farmakokinetičkih i toksikoloških karakteristika. Rezultati su pokazali da se fizičko-hemijski, farmakokinetički i toksikološki profili ispitivanih 5-LO inhibitora značajno razlikuju. Oko polovine ispitivanih 5-LO inhibitora ispunilo je „pravilo pet Lipinskog” i „pravilo Vebera”, što znači da je predviđena njihova dobra oralna bioraspoloživost. Takođe, predviđeno je da su posredi jedinjenja koja ne izazivaju mutagene, tumoralne, reproduktivne i/ili iritacione efekte. Sposobnost penetracije kroz Caco-2 ćelije, mogućnost intestinalne apsorpcije i mogućnost prolaska kroz krvno-moždanu barijeru predviđene su za mali broj ispitivanih jedinjenja. U suštini, povoljna fizičko-hemijska i toksikološka svojstva predviđena su za 32 od ukupno 99 testiranih jedinjenja. Sa najpovoljnijim farmakokinetičkim profilom izdvojio se derivat benzilidena 22.

Reference

ADMETlab 2.0., https://admetmesh.scbdd.com/ (accessed February 2022)

Amin ML. P-glycoprotein inhibition for optimal drug delivery. Drug Target Insights 2013;7:27-34. [CrossRef] [PubMed]

Araico A, Terencio MC, Alcaraz MJ, Domínguez JN, León C, Ferrándiz ML. Phenylsulphonyl urenyl chalcone derivatives as dual inhibitors of cyclo-oxygenase-2 and 5-lipoxygenase. Life Sci 2006;78(25):2911-8. [CrossRef] [PubMed]

Banoglu E, Çalişkan B, Luderer S, Eren G, Özkan Y, Altenhofen W, et al. Identification of novel benzimidazole derivatives as inhibitors of leukotriene biosynthesis by virtual screening targeting 5-lipoxygenase-activating protein (FLAP). Bioorg Med Chem 2012;20(12):3728-41. [CrossRef] [PubMed]

Banoglu E, Çelikoğlu E, Völker S, Olgaç A, Gerstmeier J, Garscha U, et al. 4,5-Diarylisoxazol-3-carboxylic acids: A new class of leukotriene biosynthesis inhibitors potentially targeting 5-lipoxygenase-activating protein (FLAP). Eur J Med Chem 2016;113:1-10. [CrossRef] [PubMed]

Barbey S, Goossens L, Taverne T, Cornet J, Choesmel V, Rouaud C, et al. Synthesis and activity of a new methoxytetrahydropyran derivative as dual cyclooxygenase-2/5-lipoxygenase inhibitor. Bioorg Med Chem Lett 2002;12(5):779-82. [CrossRef] [PubMed]

Barzen S, Rödl CB, Lill A, Steinhilber D, Stark G, Hofmann B. Synthesis and biological evaluation of a class of 5-benzylidene-2-phenyl-thiazolinones as potent 5-lipoxygenase inhibitors. Bioorg Med Chem 2012;20(11):3575-83. [CrossRef] [PubMed]

Boudreau LH, Lassalle-Claux G, Cormier M, Blanchard S, Doucet MS, Surette ME, et al. New hydroxycinnamic acid esters as novel 5-lipoxygenase inhibitors that affect leukotriene biosynthesis. Mediators Inflamm 2017;2017:6904634. [CrossRef] [PubMed]

Boudreau LH, Maillet J, LeBlanc LM, Jean-François J, Touaibia M, Flamand N, et al. Caffeic acid phenethyl ester and its amide analogue are potent inhibitors of leukotriene biosynthesis in human polymorphonuclear leukocytes. PLoS One 2012;7(2):e31833. [CrossRef] [PubMed]

Broccatelli F, Carosati E, Neri A, Frosini M, Goracci L, Oprea TI, et al. A novel approach for predicting P-glycoprotein (ABCB1) inhibition using molecular interaction fields. J Med Chem 2011;54(6):1740-51. [CrossRef] [PubMed]

Chen L, Li Y, Zhao Q, Peng H, Hou T. ADME evaluation in drug discovery. 10. Predictions of P-glycoprotein inhibitors using recursive partitioning and naive Bayesian classification techniques. Mol Pharm 2011;8(3):889-900. [CrossRef] [PubMed]

Chen QH, Praveen Rao PN, Knaus EE. Synthesis and biological evaluation of a novel class of rofecoxib analogues as dual inhibitors of cyclooxygenases (COXs) and lipoxygenases (LOXs). Bioorg Med Chem 2006;14(23):7898-909. [CrossRef] [PubMed]

Chini MG, De Simone R, Bruno I, Riccio R, Dehm F, Weinigel C, et al. Design and synthesis of a second series of triazole-based compounds as potent dual mPGES-1 and 5-lipoxygenase inhibitors. Eur J Med Chem 2012;54:311-23. [CrossRef] [PubMed]

Chowdhury MA, Abdellatif KRA, Dong Y, Das D, Suresh MR, Knaus EE. Synthesis of celecoxib analogs that possess a N-hydroxypyrid-2(1H)one 5-lipoxygenase pharmacophore: Biological evaluation as dual inhibitors of cyclooxygenases and 5-lipoxygenase with anti-inflammatory activity. Bioorg Med Chem Lett 2008;18(23):6138-41. [CrossRef] [PubMed]

Chowdhury MA, Abdellatif KRA, Dong Y, Das D, Suresh MR, Knaus EE. Synthesis of celecoxib analogues possessing a N-difluoromethyl-1,2-dihydropyrid-2-one 5-lipoxygenase pharmacophore: Biological evaluation as dual inhibitors of cyclooxygenases and 5-lipoxygenase with anti-inflammatory activity. J Med Chem 2009;52(4):1525-9. [CrossRef] [PubMed]

DataWarrior, http://www.openmolecules.org/datawarrior/ (accessed February 2022)

De Lucia D, Lucio OM, Musio B, Bender A, Listing M, Dennhardt S, et al. Design, synthesis and evaluation of semi-synthetic triazole-containing caffeic acid analogues as 5-lipoxygenase inhibitors. Eur J Med Chem 2015;101:573-83. [CrossRef] [PubMed]

Dinh CP, Ville A, Neukirch K, Viault G, Temml V, Koeberle A, et al. Structure-based design, semi-synthesis and anti-inflammatory activity of tocotrienolic amides as 5-lipoxygenase inhibitors. Eur J Med Chem 2020;202:112518. [CrossRef] [PubMed]

Doiron JA, Leblanc LM, Hébert MJG, Levesque NA, Paré AF, Jean-François J, et al. Structure-activity relationship of caffeic acid phenethyl ester analogs as new 5-lipoxygenase inhibitors. Chem Biol Drug Des 2017;89(4):514-28. [CrossRef] [PubMed]

Engman L, Stern D, Frisell H, Vessman K, Berglund M, Ek B, et al. Synthesis, antioxidant properties, biological activity and molecular modelling of a series of chalcogen analogues of the 5-lipoxygenase inhibitor DuP 654. Bioorg Med Chem 1995;3(9):1255-62. [CrossRef] [PubMed]

Enoch SJ, Cronin MTD. A review of the electrophilic reaction chemistry involved in covalent DNA binding. Crit Rev Toxicol 2010;40(8):728-48. [CrossRef] [PubMed]

Enoch SJ, Ellison CM, Schultz TW, Cronin MTD. A review of the electrophilic reaction chemistry involved in covalent protein binding relevant to toxicity. Crit Rev Toxicol 2011;41(9):783-802. [CrossRef] [PubMed]

Ertl P, Rohde B, Selzer P. Fast calculation of molecular polar surface areas as a sum of fragment-based contribution and its application to the prediction of drug transport properties. J Med Chem 2000;43(20):3714-7. [CrossRef] [PubMed]

Filosa R, Peduto A, Aparoy P, Schaible AM, Luderer S, Krauth V, et al. Discovery and biological evaluation of novel 1,4-benzoquinone and related resorcinol derivatives that inhibit 5-lipoxygenase. Eur J Med Chem 2013;67:269-79. [CrossRef] [PubMed]

Filosa R, Peduto A, Schaible AM, Krauth V, Weinigel C, Barz D, et al. Novel series of benzoquinones with high potency against 5-lipoxygenase in human polymorphonuclear leukocytes. Eur J Med Chem 2015;94:132-9. [CrossRef] [PubMed]

Fischer L, Steinhilber D, Werz O. Molecular pharmacological profile of the nonredox-type 5-lipoxygenase inhibitor CJ-13,610. Br J Pharmacol 2004;142(5):861-8. [CrossRef] [PubMed]

Fromm MF. P-glycoprotein: a defense mechanism limiting oral bioavailability and CNS accumulation of drugs. Int J Clin Pharmac Ther 2000;38(2):69-74. [CrossRef] [PubMed]

Grimm EL, Brideau C, Chauret N, Chan CC, Delorme D, Ducharme Y, et al. Substituted coumarins as potent 5-lipoxygenase inhibitors. Bioorg Med Chem Lett 2006;16(9):2528-31. [CrossRef] [PubMed]

Hamel P, Riendeau D, Brideau C, Chan CC, Desmarais S, Delorme D, et al. Substituted (pyridylmethoxy)naphthalenes as potent and orally active 5-lipoxygenase inhibitors: Synthesis, biological profile, and pharmacokinetics of L-739,010. J Med Chem 1997;40(18):2866-75. [CrossRef] [PubMed]

Hanke T, Dehm F, Liening S, Popella SD, Maczewsky J, Pillong M, et al. Aminothiazole-featured pirinixic acid derivatives as dual 5‑lipoxygenase and microsomal prostaglandin E2 synthase‑1 inhibitors with improved potency and efficiency in vivo. J Med Chem 2013;56(22):9031-44. [CrossRef] [PubMed]

Hidalgo IJ, Raub TJ, Borchardt RT. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 1989;96(3):736-49. [CrossRef] [PubMed]

Hieke M, Rödl CB, Wisniewska JM, la Buscató E, Stark H, Schubert-Zsilavecz M, et al. SAR-study on a new class of imidazo[1,2-a]pyridine-based inhibitors of 5-lipoxygenase. Bioorg Med Chem Lett 2012;22(5):1969-75. [CrossRef] [PubMed]

Hiesinger K, Kramer JS, Beyer S, Eckes T, Brunst S, Flauaus C, et al. Design, synthesis, and structure-activity relationship studies of dual inhibitors of soluble epoxide hydrolase and 5-lipoxygenase. J Med Chem 2020;63(20):11498-521. [CrossRef] [PubMed]

Hofmann B, Barzen S, Rödl CB, Kiehl A, Borig J, Živković A, et al. A class of 5-benzylidene-2-phenylthiazolinones with high potency as direct 5-lipoxygenase inhibitors. J Med Chem 2011;54(6):1943-7. [CrossRef] [PubMed]

Karg EM, Luderer S, Pergola C, Bühring U, Rossi A, Northoff H, et al. Structural optimization and biological evaluation of 2-substituted 5-hydroxyindole-3-carboxylates as potent inhibitors of human 5-lipoxygenase. J Med Chem 2009;52(11):3474-83. [CrossRef] [PubMed]

Kretschmer SBM, Woltersdorf S, Rödl CB, Vogt D, Häfner AK, Steinhilber D, et al. Development of novel aminothiazole-comprising 5-LO inhibitors. Future Med Chem 2016;8(2):149-64. [CrossRef] [PubMed]

Landwehr J, George S, Karg EM, Poeckel D, Steinhilber D, Troschuetz R, et al. Design and synthesis of novel 2-amino-5-hydroxyindole derivatives that inhibit human 5-lipoxygenase. J Med Chem 2006;49(14):4327-32. [CrossRef] [PubMed]

Laufer SA, Augustin JJ, Dannhardt G, Kiefert W. (6,7-Diaryldihydropyrrolizin-5-yl)acetic acids, a novel class of potent dual inhibitors of both cyclooxygenase and 5-lipoxygenase. J Med Chem 1994;37(12):1894-7. [CrossRef] [PubMed]

Lewis TA, Young MA, Arrington MP, Bayless L, Cai X, Collart P, et al. Cetirizine and loratadine-based antihistamines with 5-lipoxygenase inhibitory activity. Bioorg Med Chem Lett 2004;14(22):5591-4. [CrossRef] [PubMed]

Li L, Berthelette C, Chateauneuf A, Ouellet M, Sturino CF, Wang Z. Potent and selective 5-LO inhibitor bearing benzothiophene pharmacophore: Discovery of MK-5286. Bioorg Med Chem Lett 2010;20(24):7440-3. [CrossRef] [PubMed]

Li L, Ji H, Sheng L, Zhang Y, Lai Y, Chen X. The anti-inflammatory effects of ZLJ-6, a novel dual cyclooxygenase/5-lipoxygenase inhibitor. Eur J Pharmacol 2009;607(1-3):244-50. [CrossRef] [PubMed]

Lin CF, Chang TC, Chiang CC, Tsai HJ, Hsu LY. Synthesis of selenium-containing polyphenolic acid esters and evaluation of their effects on antioxidation and 5-lipoxygenase inhibition. Chem Pharm Bull 2005;53(11):1402-7. [CrossRef] [PubMed]

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001;46(1-3):3-26. [CrossRef]

Mano T, Stevens RW, Ando K, Kawai M, Kawamura K, Nakao K, et al. Optimization of imidazole 5-lipoxygenase inhibitors and selection and synthesis of a development candidate. Chem Pharm Bull 2005;53(8):965-73. [CrossRef] [PubMed]

Meirer K, Rödl CB, Wisniewska JM, George S, Häfner A, la Buscató E, et al. Synthesis and structure-activity relationship studies of novel dual inhibitors of soluble epoxide hydrolase and 5‑lipoxygenase. J Med Chem 2013;56(4):1777-81. [CrossRef] [PubMed]

Molinspiration, http://www.molinspiration.com/ (accessed February 2022)

Nakano H, Inoue T, Kawasaki N, Miyataka H, Matsumoto H, Taguchi T, et al. Synthesis and biological activities of novel antiallergic agents with 5-lipoxygenase inhibiting action. Bioorg Med Chem 2000;8(2):373-80. [CrossRef] [PubMed]

Ohemeng KA, Appollina MA, Nguyen VN, Schwender CF, Singer M, Steber M, et al. Synthesis and 5-lipoxygenase inhibitory activities of some novel 2-substituted 5-benzofuran hydroxamic acids. J Med Chem 1994;37(21):3663-7. [CrossRef] [PubMed]

Peduto A, Krauth V, Collarile S, Dehm F, Ambruosi M, Belardo C, et al. Exploring the role of chloro and methyl substitutions in 2-phenylthiomethyl-benzoindole derivatives for 5-LOX enzyme inhibition. Eur J Med Chem 2016;108:466-75. [CrossRef] [PubMed]

Pergola C, Werz O. 5-Lipoxygenase inhibitors: a review of recent developments and patents. Expert Opin Ther Pat 2010;20(3):355-75. [CrossRef] [PubMed]

Prasanna S, Doerksen RJ. Topological polar surface area: a useful descriptor in 2D-QSAR. Curr Med Chem 2009;16(1): 21-41. [CrossRef] [PubMed]

Prasher P, Pooja, Singh P. Lead modification: Amino acid appended indoles as highly effective 5-LOX inhibitors. Bioorg Med Chem 2014;22(5):1642-8. [CrossRef] [PubMed]

Praveen Rao PN, Chen QH, Knaus EE. Synthesis and structure-activity relationship studies of 1,3-diarylprop-2-yn-1-ones: dual inhibitors of cyclooxygenases and lipoxygenases. J Med Chem 2006;49(5):1668-83. [CrossRef] [PubMed]

Rödl CB, Vogt D, Kretschmer SBM, Ihlefeld K, Barzen S, Brüggerhoff A, et al. Multi-dimensional target profiling of N,4-diaryl-1,3-thiazole-2-amines as potent inhibitors of eicosanoid metabolism. Eur J Med Chem 2014;84:302-11. [CrossRef] [PubMed]

Schaible AM, Filosa R, Temml V, Krauth V, Matteis M, Peduto A, et al. Elucidation of the molecular mechanism and the efficacy in vivo of a novel 1,4-benzoquinone that inhibits 5-lipoxygenase. Br J Pharmacol 2014;171(9):2399-412. [CrossRef] [PubMed]

Schieferdecker S, König S, Pace S, Werz O, Nett M. Myxochelin-inspired 5-lipoxygenase inhibitors: Synthesis and biological evaluation. ChemMedChem 2017;12(1):23-7. [CrossRef] [PubMed]

Shang E, Liu Y, Wu Y, Zhu W, He C, Lai L. Development of 3,5-dinitrobenzoate-based 5-lipoxygenase inhibitors. Bioorg Med Chem 2014;22(8):2396-402. [CrossRef] [PubMed]

Singh P, Kaur J, Singh G, Bhatti R. Tri-block conjugates: Identification of a highly potent anti-inflammatory agent. J Med Chem 2015;58(15):5989-6001. [CrossRef] [PubMed]

Singh P, Pooja. N-1, C-3 substituted indoles as 5-LOX inhibitors – In vitro enzyme immunoaasay, mass spectral and molecular docking investigations. Bioorg Med Chem Lett 2013;23(5):1433-7. [CrossRef] [PubMed]

Sinha S, Doble M, Manju SL. 5-Lipoxygenase as a drug target: A review on trends in inhibitors structural design, SAR and mechanism based approach. Bioorg Med Chem 2019;27(17):3745-59. [CrossRef] [PubMed]

Sinha S, Doble M, Manju SL. Design, synthesis and identification of novel substituted 2-amino thiazole analogues as potential anti-inflammatory agents targeting 5-lipoxygenase. Eur J Med Chem 2018;158:34-50. [CrossRef] [PubMed]

Sogawa S, Nihro Y, Ueda H, Izumi A, Miki T, Matsumoto H, et al. 3,4-Dihydroxychalcones as potent 5-lipoxygenase and cyclooxygenase inhibitors. J Med Chem 1993;36(24):3904-9. [CrossRef] [PubMed]

Song H, Oh SR, Lee HK, Han G, Kim JH, Chang HW, et al. Synthesis and evaluation of benzoxazole derivatives as 5-lipoxygenase inhibitors. Bioorg Med Chem 2010;18(21):7580-5. [CrossRef] [PubMed]

Srivastava P, Vyas VK, Variya B, Patel P, Qureshi G, Ghate M. Synthesis, anti-inflammatory, analgesic, 5-lipoxygenase (5-LOX) inhibition activities, and molecular docking study of 7-substituted coumarin derivatives. Bioorg Chem 2016;67:130-8. [CrossRef] [PubMed]

Suh J, Yum EK, Cheon HG, Cho YS. Synthesis and biological evaluation of N-aryl-4-aryl-1,3-thiazole-2-amine derivatives as direct 5-lipoxygenase inhibitors. Chem Biol Drug Des 2012;80(1):90-9. [CrossRef] [PubMed]

Suh JH, Yum EK, Cho YS. Synthesis and biological evaluation of N-aryl-5-aryloxazol-2-amine derivatives as 5-lipoxygenase inhibitors. Chem Pharm Bull 2015;63(8):573-8. [CrossRef] [PubMed]

Tan CM, Chen GS, Chen CS, Chang PT, Chern JW. Design, synthesis and biological evaluation of benzo[1.3.2]dithiazolium ylide 1,1-dioxide derivatives as potential dual cyclooxygenase-2/5-lipoxygenase inhibitors. Bioorg Med Chem 2011;19(21):6316-28. [CrossRef] [PubMed]

Toxtree, v.2.6.13 (accessed February 2022)

Unangst PC, Connor DT, Cetenko WA, Sorenson RJ, Kostlan CR, Sircar JC, et al. Synthesis and biological evaluation of 5[[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]methylene]oxazoles, -thiazoles, and -imidazoles: novel dual 5-lipoxygenase and cyclooxygenase inhibitors with antiinflammatory activity. J Med Chem 1994;37(2):322-8. [CrossRef] [PubMed]

Van Breemen RB, Li Y. Caco-2 cell permeability assays to measure drug absorption. Expert Opin Drug Metab Toxicol 2005;1(2):175-85. [CrossRef] [PubMed]

Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 2002;45(12):2615-23. [CrossRef] [PubMed]

Vladimirov S, Agbaba D. Eikozanoidi u terapiji astme. Arh Farm 2002;52(1-2):41-54.

Werz O, Greiner C, Koeberle A, Hoernig C, George S, Popescu L, et al. Novel and potent inhibitors of 5-lipoxygenase product synthesis based on the structure of pirinixic acid. J Med Chem 2008;51(17):5449-53. [CrossRef] [PubMed]

Werz O, Steinhilber D. Therapeutic options for 5-lipoxygenase inhibitors. Pharmacol Ther 2006;112(3):701-18. [CrossRef] [PubMed]

Wiechmann K, Müller H, Huch V, Hartmann D, Werz O, Jauch J. Synthesis and biological evaluation of novel myrtucommulones and structural analogues that target mPGES-1 and 5-lipoxygenase. Eur J Med Chem 2015;101:133-49. [CrossRef] [PubMed]

Xu GL, Liu F, Ao GZ, He SY, Ju M, Yhao Y, et al. Anti-inflammatory effects and gastrointestinal safety of NNU-hdpa, a novel dual COX/5-LOX inhibitor. Eur J Pharmacol 2009;611(1-3):100-6. [CrossRef] [PubMed]

Xu GL, Liu F, Zhao Y, Ao GZ, Xi L, Ju M, et al. Biological evaluation of 2-(4-amino-phenyl)-3-(3,5-dihydroxylphenyl) propenoic acid. Basic Clin Pharmacol Toxicol 2009;105(5):350-6. [CrossRef] [PubMed]

Yu G, Praveen Rao PN, Chowdhury MA, Abdellatif KRA, Dong Y, Das D, et al. Synthesis and biological evaluation of N-difluoromethyl-1,2-dihydropyrid-2-one acetic acid regioisomers: Dual inhibitors of cyclooxygenases and 5-lipoxygenase. Bioorg Med Chem Lett 2010;20(7):2168-73. [CrossRef] [PubMed]

Zheng M, Zheng M, Ye D, Deng Y, Qiu S, Luo X, et al. Indole derivatives as potent inhibitors of 5-lipoxygenase: Design, synthesis, biological evaluation, and molecular modeling. Bioorg Med Chem Lett 2007;17(9):2414-20. [CrossRef] [PubMed]

Objavljeno
2025/02/07
Rubrika
Originalni rad