KI-67 MARKER ĆELIJSKE PROLIFERACIJE U HUMANOJ METANEFROGENEZI

  • Milorad Antić Faculty of Medicine - University of Nis
  • Vladimir Antić Fakultet fizičke kulture i sporta, Niš, Srbija
  • Braca Kundalić Univerzitet u Nišu, Medicinski fakultet, Niš, Srbija
  • Miljana Pavlović Univerzitet u Nišu, Medicinski fakultet, Niš, Srbija
  • Vladimir Živković Univerzitet u Nišu, Medicinski fakultet, Niš, Srbija
Ključne reči: razvoj bubrega, metanefrogeneza, proliferacija ćelija, Ki-67

Sažetak


Bubreg obavlja više neophodnih funkcija, poput izlučivanja metaboličkog otpada, održavanja ključnih parametara homeostaze krvne plazme, učešća u regulaciji krvnog pritiska i nivoa hormona. Ove raznovrsne funkcije omogućava proces razvoja, koji je osigurao prisustvo specifičnih ćelija za obavljanje svih složenih zadataka. Organogeneza bubrega je kompleksan proces koji uključuje proliferaciju ćelija kao osnovni nužni proces. Cilj ove studije bio je da se utvrdi proliferativna aktivnost u toku faze razvoja metanefrosa na osnovu profila/izgleda prostorne i vremenske ekspresije markera ćelijske proliferacije Ki-67. Analizirani su uzorci bubrežnog tkiva 30 ljudskih fetusa gestacijske starosti od 11 do 36 nedelja. Uzorci su podeljeni u tri grupe na osnovu perioda razvoja, koji su odgovarali ranijem, srednjem ili kasnijem periodu gestacije. Rutinskom histološkom obradom dobijeni su isečci tkiva na kojima je proliferativna aktivnost ćelija (ekspresija proteina Ki-67) ispitivana imunohistohemijskom metodom, monoklonskim antitelom Ki67, i to prema protokolu proizvođača.

         Ćelije pozitivne na Ki-67 karakterisale su sa različitim intenzitetom sve strukture metanefrosa. Najizraženije je bilo njihovo prisustvo u nefrogenoj zoni u ranijim nedeljama razvoja, što ukazuje na ulogu proliferacije ćelija u formiranju nefrona. Intenzitet ekspresije Ki-67 antigena postepeno je opadao u svim kortikalnim strukturama do kraja ispitivanog perioda. U meduli metanefrosa proliferacija je bila slabije izražena samo nakon 20. nedelje; bile su pozitivne na Ki-67 pojedinačne epitelne ćelije sabirnih kanala, uskih delova Henleovih petlji i intersticijuma.

         Proliferacija ćelija bila je kontinuirano prisutna tokom metanefrogeneze; odvijala se različitom dinamikom, a bila je izraženija u nefrogenoj zoni i bubrežnom korteksu zbog dominacije ćelija u njihovim strukturnim komponentama. Evidentno prisutno razvojno remodelovanje tkiva bubrega ukazalo je na potrebu korelacije proliferacije sa drugim razvojnim procesima, pre svega apoptozom.

Reference

Agilent Technologies. Monoclonal Mouse Anti-Human Ki-67 Antigen Clone MIB-1 [package insert]. Santa Clara, CA: Agilent Technologies; 2024. Available from: https://www.agilent.com/cs/library/packageinsert/public/Copy%20of%20SSM7240CEEFG_03.pdf

Antić M. Komparativna analiza imunohistohemijskih i histomorfometrijskih karakteristika humane metanefrogeneze [dissertation]. Niš: Medicinski fakultet Univerziteta u Nišu; 2022.

Carev D, Krnić D, Saraga M, Sapunar D, Saraga-Babić M. Role of mitotic, pro-apoptotic and anti-apoptotic factors in human kidney development. Pediatr Nephrol 2006;21(5):627-36. [CrossRef][PubMed]

Costantini F, Kopan R. Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev Cell 2010;18(5):698-712. [CrossRef][PubMed]

Daković-Bjelaković M, Stefanović N, Vlajković S, Čukuranović R, Antić S, Bjelaković G at al. Human kidney development. Acta Fac Med Naiss 2004;21(3):163-70.

Davies JA. Morphogenesis of the Metanephric Kidney. The Scientific World Journal 2002;2:1937–50. [CrossRef][PubMed]

Dressler GR. Advances in early kidney specification, development and patterning. Development 2009;136:3863-74. [CrossRef][PubMed]

Dressler GR. The cellular basis of kidney development. Annu Rev Cell Dev Biol 2006;22:509–29. [CrossRef][PubMed]

Faa G, Gerosa C, Fanni D, Monga G, Zaffanello M, Van Eyken P, et al. Morphogenesis and molecular mechanisms involved in human kidney development. J Cell Physiol 2012;227(3):1257-68. [CrossRef][PubMed]

Faa G, Gerosa C, Fanni D, Nemolato S, Di Felice E, Van Eyken P, et al. The role of immunohistochemistry in the study of the newborn kidney. J Matern Fetal Neonatal Med 2012;25(Suppl 4):135-8. [CrossRef][PubMed]

Hinchliffe SA, Sargent PH, Howard CV, Chan YF, van Velzen D. Human intrauterine renal growth expressed in absolute number of glomeruli assessed by the disector method and Cavalieri principle. Lab Invest 1991;64(6):777–84. [PubMed]

Lindström NO, Tran T, Guo J, Rutledge E, Parvez RK, Thornton ME, et al. Conserved and Divergent Molecular and Anatomic Features of Human and Mouse Nephron Patterning. J Am Soc Nephrol 2018;29:825–40. [CrossRef][PubMed]

Little M, Georgas K, Pennisi D, Wilkinson L. Kidney development: two tales of tubulogenesis. Curr Top Dev Biol 2010;90:193-229. [CrossRef][PubMed]

Little MH, McMahon AP. Mammalian kidney development: principles, progress, and projections. Cold Spring Harb Perspect Biol 2012;4(5):a008300. [CrossRef][PubMed]

McEwen LC, Sutherland MR, Black MJ. The Human kidney: Parallels in structure, spatial development, and timing of nephrogenesis. In: Little MH, editor. Kidney development, disease, repair and regeneration. Cambridge (US): Academic Press; 2016. p. 27-40. [CrossRef]

Minuth WW. Shaping of the nephron - a complex, vulnerable, and poorly explored backdrop for noxae impairing nephrogenesis in the fetal human kidney. Mol Cell Pediatr 2020;7(1):2. [CrossRef][PubMed]

Moritz KM, Wintour EM, Black MJ, Bertram JF, Caruana G. Factors influencing mammalian kidney development: implications for health in adult life. Adv Anat Embryol Cell Biol 2008;196:1-78. [CrossRef][PubMed]

Nagalakshmi VK, Yu J. The ureteric bud epithelium: morphogenesis and roles in metanephric kidney patterning. Mol Reprod Dev 2015;82(3):151-66. [CrossRef][PubMed]

Pietilä I, Vainio SJ. Kidney Development: An Overview. Nephron Exp Nephrol 2014;126:40–4. [CrossRef][PubMed]

Pokarna DJ, Kshitija K, Saritha S. Histogenesis of human fetal kidney from 14 weeks to 36 weeks: a study. International Journal of Research in Medical Sciences 2019;7(11):4330-34. [CrossRef]

Puddu M, Fanos V, Podda F, Zaffanello M. The kidney from prenatal to adult life: perinatal programming and reduction of number of nephrons during development. Am J Nephrol 2009;30(2):162-70. [CrossRef][PubMed]

Reidy KJ, Rosenblum ND. Cell and molecular biology of kidney development. Semin Nephrol 2009;29(4):321-37. [CrossRef][PubMed]

Rosenblum ND. Developmental biology of the human kidney. Semin Fetal Neonatal Med 2008;13(3):125-32. [CrossRef][PubMed]

Ryan D, Sutherland MR, Flores TJ, Kent AL, Dahlstrom JE, Puelles VG, et al. Development of the Human fetal kidney from mid to Late gestation in male and female infants. EBioMedicine 2018; 27:275-83. [CrossRef][PubMed]

Short KM, Smyth IM. Branching morphogenesis as a driver of renal development. Anat Rec 2020;303(10):2578-87. [CrossRef][PubMed]

Short KM, Smyth IM. The contribution of branching morphogenesis to kidney development and disease. Nat Rev Nephrol 2016;12(12):754-67. [CrossRef][PubMed]

Tank KC, Saiyad SS, Pandya AM, Akbari VJ, Dangar KP. A study of histogenesis of human fetal kidney. Int J Biol Med Res 2012;3(1):1315-21.

Objavljeno
2025/02/07
Rubrika
Originalni rad