BOBIČASTO VOĆE KAO PRIRODNO SREDSTVO POTPORE KOSTIJU: UČEŠĆE ANTOCIJANA U MOLEKULARNIM MEHANIZMIMA PROCESA ZALEČENJA I REGENERACIJE

  • Jelena Najdanović Univerzitet u Nišu, Medicinski fakultet u Nišu, UNO Biologija sa humanom genetikom, Bulevar dr Zorana Đinđića 81, 18000 Niš, Srbija; Univerzitet u Nišu, Medicinski fakultet u Nišu, Odeljenje za ćelijsko i tkivno inženjerstvo, Naučno-istraživački centar za biomedicinu, Bulevar dr Zorana Đinđića 81, 18000 Niš, Srbija https://orcid.org/0000-0003-4178-3913
  • Stevo J. Najman Univerzitet u Nišu, Medicinski fakultet u Nišu, UNO Biologija sa humanom genetikom, Bulevar dr Zorana Đinđića 81, 18000 Niš, Srbija; Univerzitet u Nišu, Medicinski fakultet u Nišu, Odeljenje za ćelijsko i tkivno inženjerstvo, Naučno-istraživački centar za biomedicinu, Bulevar dr Zorana Đinđića 81, 18000 Niš, Srbija https://orcid.org/0000-0002-2411-9802
  • Jelena M. Živković Univerzitet u Nišu, Medicinski fakultet u Nišu, UNO Biologija sa humanom genetikom, Bulevar dr Zorana Đinđića 81, 18000 Niš, Srbija; Univerzitet u Nišu, Medicinski fakultet u Nišu, Odeljenje za ćelijsko i tkivno inženjerstvo, Naučno-istraživački centar za biomedicinu, Bulevar dr Zorana Đinđića 81, 18000 Niš, Srbija https://orcid.org/0000-0002-4010-5742
  • Bojana M. Miladinović Univerzitet u Nišu, Medicinski fakultet u Nišu, Katedra za Farmaciju, Bulevar dr Zorana Đinđića 81, 18000 Niš, Srbija https://orcid.org/0000-0003-2880-6519
Ključne reči: zaceljenje kostiju, regeneracija kostiju, bobičasto voće, antocijani, molekularni mehanizmi

Sažetak


 Koštano tkivo ima izuzetan potencijal samoregeneracije koji, u slučaju da dođe do povrede, omogućava povratak u potpuno funkcionalno stanje pre povrede. Međutim, starenje, bolesti, gojaznost, traume, višestruki prelomi, infekcije i uklanjanje tumora uzrokuju velike koštane defekte koji se ne mogu spontano zalečiti. Kako bi zaceljenje i regeneracija kostiju bili uspešni, razvijeni su različiti pristupi, među kojima su i primena autografta, alografta i tkivnog inženjerstva kosti. Jedan od pristupa zasniva se na saznanju da gubitak kostiju kod ljudi i kod mnogih životinja u toku starenja delimično izaziva akumulacija reaktivnih vrsta kiseonika. Zbog spektra bioloških aktivnosti, uključujući i onu antioksidativnu, esencijalna polifenolna jedinjenja ‒ antocijani ‒ deo su značajne oblasti istraživanja povezane sa sredstvima i metodama koje se koriste za zaceljenje i regeneraciju kostiju. Bobičasto voće je posebno bogato antocijanima. Na osnovu in vitro i in vivo proučavanja molekularnih mehanizama uključenih u zaceljenje i regeneraciju kostiju koji su potpomognuti antocijanima iz bobičastog voća i na osnovu opservacionih istraživanja sprovedenih među ljudima, utvrđeno je da antocijani bobičastog voća pospešuju osteoblastogenezu, suzbijaju osteoklastogenezu i imaju osteoimunološku aktivnost. Dakle, antocijane iz bobičastog voća treba smatrati potencijalnim, široko rasprostranjenim terapijskim sredstvom davanja potpore kostima. Ipak, pre primene bobičastog voća kao prirodnog sredstva potpore kostima, treba se pozabaviti pojašnjenjem molekularnih mehanizama delovanja antocijana u metabolizmu kostiju i utvrđivanjem efikasnih doza konkretnih antocijana za terapiju regeneracije kostiju. Takođe, treba sprovesti kliničke studije kako bi se utvrdila terapijska efikasnost različitih tipova i koncentracija antocijana.  

Reference

Almeida M, O'Brien CA. Basic biology of skeletal aging: role of stress response pathways. J Gerontol A Biol Sci Med Sci 2013;68(10):1197-208. [CrossRef] [PubMed]

An X, Tan T, Song Z, Guo X, Zhang X, Zhu Y, et al. Physiological response of anthocyanin synthesis to different light intensities in blueberry. PLoS One 2023;18(6):e0283284. [CrossRef] [PubMed]

Ansari M. Bone tissue regeneration: biology, strategies and interface studies. Prog Biomater 2019;8(4):223-37. [CrossRef] [PubMed]

Arjmandi BH, Lucas EA, Juma S, Soliman A, Stoecker BJ, Khalil DA, et al. Dried plums prevent ovariectomy-induced bone loss in rats. JANA 2001;4:50-6.

Bai XC, Lu D, Bai J, Zheng H, Ke ZY, Li XM, et al. Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-kappaB. Biochem Biophys Res Commun 2004;314(1):197-207. [CrossRef] [PubMed]

Baldwin P, Li DJ, Auston DA, Mir HS, Yoon RS, Koval KJ. Autograft, allograft, and bone graft substitutes: clinical evidence and indications for use in the setting of orthopaedic trauma surgery. J Orthop Trauma 2019;33(4):203-13. [CrossRef] [PubMed]

Banfi G, Iorio EL, Corsi MM. Oxidative stress, free radicals and bone remodeling. Clin Chem Lab Med 2008;46(11):1550-5. [CrossRef] [PubMed]

Barba M, Di Taranto G, Lattanzi W. Adipose-derived stem cell therapies for bone regeneration. Expert Opin Biol Ther 2017;17(6):677-89. [CrossRef] [PubMed]

Barbeck M, Najman S, Stojanović S, Mitić Ž, Živković JM, Choukroun J, et al. Addition of blood to a phycogenic bone substitute leads to increased in vivo vascularization. Biomed Mater 2015;10(5):055007. [CrossRef] [PubMed]

Bilawal A, Ishfaq M, Gantumur M-A, Qayum A, Shi R, Fazilani SA, et al. A review of the bioactive ingredients of berries and their applications in curing diseases. Food Biosci 2021;44 (Part A): 101407. [CrossRef]

Bishop AT, Pelzer M. Vascularized bone allotransplantation: current state and implications for future reconstructive surgery. Orthop Clin North Am 2007;38(1):109-22. [CrossRef] [PubMed]

Carocho M, Ferreira IC. A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol 2013; 51:15-25. [CrossRef] [PubMed]

Casati L, Pagani F, Fibiani M, Lo Scalzo R, Sibilia V. Potential of delphinidin-3-rutinoside extracted from Solanum melongena L. as promoter of osteoblastic MC3T3-E1 function and antagonist of oxidative damage. Eur J Nutr 2019;58(3):1019-32. [CrossRef] [PubMed]

Cheng J, Zhou L, Liu Q, Tickner J, Tan Z, Li X, et al. Cyanidin chloride inhibits ovariectomy-induced osteoporosis by suppressing RANKL-mediated osteoclastogenesis and associated signaling pathways. J Cell Physiol 2018;233(3):2502-12. [CrossRef] [PubMed]

Cvetković VJ, Najdanović JG, Vukelić-Nikolić MĐ, Stojanović S, Najman SJ. Osteogenic potential of in vitro osteo-induced adipose-derived mesenchymal stem cells combined with platelet-rich plasma in an ectopic model. Int Orthop 2015;39(11):2173-80. [CrossRef] [PubMed]

Demontiero O, Vidal C, Duque G. Aging and bone loss: new insights for the clinician. Ther Adv Musculoskelet Dis 2012;4(2):61-76. [CrossRef] [PubMed]

Devareddy L, Hooshmand S, Collins JK, Lucas EA, Chai SC, Arjmandi BH. Blueberry prevents bone loss in ovariectomized rat model of postmenopausal osteoporosis. J Nutr Biochem 2008;19(10):694-9. [CrossRef] [PubMed]

Djordjević B, Šavikin K, Zdunić G, Janković T, Vulić T, Oparnica Č, et al. Biochemical properties of red currant varieties in relation to storage. Plant Foods Hum Nutr 2010;65:326-32. [CrossRef] [PubMed]

Domazetovic V, Marcucci G, Falsetti I, Bilia AR, Vincenzini MT, Brandi ML, et al. Blueberry juice antioxidants protect osteogenic activity against oxidative stress and improve long-term activation of the mineralization process in human osteoblast-like SaOS-2 Cells: Involvement of SIRT1. Antioxidants (Basel) 2020;9(2):125. [CrossRef] [PubMed]

Domazetovic V, Marcucci G, Iantomasi T, Brandi ML, Vincenzini MT. Oxidative stress in bone remodeling: role of antioxidants. Clin Cases Miner Bone Metab 2017;14(2):209-16. [CrossRef] [PubMed]

Dou C, Li J, Kang F, Cao Z, Yang X, Jiang H, et al. Dual effect of cyanidin on RANKL-induced differentiation and fusion of osteoclasts. J Cell Physiol 2016;231(3):558-67. [CrossRef] [PubMed]

Dreher I, Schütze N, Baur A, Hesse K, Schneider D, Köhrle J, et al. Selenoproteins are expressed in fetal human osteoblast-like cells. Biochem Biophys Res Commun 1998;245(1):101-7. [CrossRef] [PubMed]

Đudarić L, Fužinac-Smojver A, Muhvić D, Giacometti J. The role of polyphenols on bone metabolism in osteoporosis. Food Research International 2015;77(2):290-8. [CrossRef]

Eker ME, Aaby K, Budic-Leto I, Brnčić SR, El SN, Karakaya S, et al. A review of factors affecting anthocyanin bioavailability: possible implications for the inter-individual variability. Foods 2019;9(1):2. [CrossRef] [PubMed]

Gopalan A, Reuben SC, Ahmed S, Darvesh AS, Hohmann J, Bishayee A. The health benefits of blackcurrants. Food Funct 2012;3(8): 795-809. [CrossRef] [PubMed]

Hardcastle AC, Aucott L, Fraser WD, Reid DM, Macdonald HM. Dietary patterns, bone resorption and bone mineral density in early post-menopausal Scottish women. Eur J Clin Nutr 2011;65(3):378-85. [CrossRef] [PubMed]

He F, Mu L, Yan GL, Liang NN, Pan QH, Wang J, et al. Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules 2010;15(12):9057-91. [CrossRef] [PubMed]

He J, Giusti MM. Anthocyanins: natural colorants with health-promoting properties. Annu Rev Food Sci Technol 2010;1:163-87. [CrossRef] [PubMed]

Healy KE, Guldberg RE. Bone tissue engineering. J Musculoskelet Neuronal Interact 2007;7(4):328-30. [PubMed]

Hu B, Chen L, Chen Y, Zhang Z, Wang X, Zhou B. Cyanidin-3-glucoside regulates osteoblast differentiation via the ERK1/2 signaling pathway. ACS Omega 2021;6(7):4759-66. [CrossRef] [PubMed]

Joshi DD, Deb L, Somkuwar BG, Rana VS. Potential use of barks of woody vascular plants in bone mending: A review. Saudi Pharm J 2023;31(9):101714. [CrossRef] [PubMed]

Kim JM, Yang YS, Park KH, Oh H, Greenblatt MB, Shim JH. The ERK MAPK pathway is essential for skeletal development and homeostasis. Int J Mol Sci 2019;20(8):1803. [CrossRef] [PubMed]

Lee SG, Kim B, Soung do Y, Vance T, Lee JS, Lee JY, et al. Relationship between oxidative stress and bone mass in obesity and effects of berry supplementation on bone remodeling in obese male mice: an exploratory study. J Med Food 2015;18(4):476-82. [CrossRef] [PubMed]

Lee SG, Kim B, Yang Y, Pham TX, Park YK, Manatou J, et al. Berry anthocyanins suppress the expression and secretion of proinflammatory mediators in macrophages by inhibiting nuclear translocation of NF-kB independent of NRF2-mediated mechanism. J Nutr Biochem 2014;25(4), 404-11. [CrossRef] [PubMed]

Lee SG, Vance TM, Nam TG, Kim DO, Koo SI, Chun OK. Contribution of anthocyanin composition to total antioxidant capacity of berries. Plant Foods Hum Nutr 2015;70(4):427-32. [CrossRef] [PubMed]

Leyva-López N, Gutierrez-Grijalva EP, Ambriz-Perez DL, Heredia JB. Flavonoids as cytokine modulators: a possible therapy for inflammation-related diseases. Int J Mol Sci 2016;17(6):921. [CrossRef] [PubMed]

Li JJ, Huang ZW, Wang RQ, Ma XM, Zhang ZQ, Liu Z, et al. Fruit and vegetable intake and bone mass in Chinese adolescents, young and postmenopausal women. Public Health Nutr 2012;16(1):78-86. [CrossRef] [PubMed]

Li T, Wu SM, Xu ZY, Ou-Yang S. Rabbiteye blueberry prevents osteoporosis in ovariectomized rats. J Orthop Surg Res 2014;9:56. [CrossRef] [PubMed]

Liu J, Han W, Chen L, Tang K. Mechanism of osteogenic and adipogenic differentiation of tendon stem cells induced by sirtuin 1. Mol Med Rep 2016;14(2):1643-8. [CrossRef] [PubMed]

Liu Z, Liang T, Kang C. Molecular bases of strawberry fruit quality traits: Advances, challenges, and opportunities. Plant Physiology 2023;193(2):900-14. [CrossRef] [PubMed]

Maggio D, Barabani M, Pierandrei M, Polidori MC, Catani M, Mecocci P, et al. Marked decrease in plasma antioxidants in aged osteoporotic women: results of a cross-sectional study. J Clin Endocrinol Metab 2003;88(4):1523-7. [CrossRef] [PubMed]

Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004;79(5):727-47. [CrossRef] [PubMed]

Mao W, Huang G, Chen H, Xu L, Qin S, Li A. Research progress of the role of anthocyanins on bone regeneration. Front Pharmacol 2021; 12:773660. [CrossRef] [PubMed]

Mende W, Götzl R, Kubo Y, Pufe T, Ruhl T, Beier JP. The role of adipose stem cells in bone regeneration and bone tissue engineering. Cells 2021;10(5):975. [CrossRef] [PubMed]

Millar CL, Duclos Q, Blesso CN. Effects of dietary flavonoids on reverse cholesterol transport, HDL metabolism, and HDL function. Adv Nutr 2017;8(2):226-39. [CrossRef] [PubMed]

Moriwaki S, Suzuki K, Muramatsu M, Nomura A, Inoue F, Into T, et al. Delphinidin, one of the major anthocyanidins, prevents bone loss through the inhibition of excessive osteoclastogenesis in osteoporosis model mice. PLoS One 2014;9(5):e97177. [CrossRef] [PubMed]

Motohashi N, Sakagami H. Functionality of anthocyanins as alternative medicine. In: Motohashi N, editor. Bioactive heterocycles VI. Topics in heterocyclic chemistry. Berlin, Heidelberg: Springer; 2008. 15: p. 1-48. [CrossRef]

Nagaoka M, Maeda T, Chatani M, Handa K, Yamakawa T, Kiyohara S, et al. A delphinidin-enriched maqui berry extract improves bone metabolism and protects against bone loss in osteopenic mouse models. Antioxidants (Basel) 2019;8(9):386. [CrossRef] [PubMed]

Nagaoka M, Maeda T, Moriwaki S, Nomura A, Kato Y, Niida S, et al. Petunidin, a B-ring 5′-O-methylated derivative of delphinidin, stimulates osteoblastogenesis and reduces sRANKL-induced bone loss. Int J Mol Sci 2019;20(11):2795. [CrossRef] [PubMed]

Najdanović JG, Cvetković VJ, Stojanović S, Vukelić-Nikolić MĐ, Stanisavljević MN, Živković JM, et al. The influence of adipose-derived stem cells induced into endothelial cells on ectopic vasculogenesis and osteogenesis. Cell Mol Bioeng 2015;8(4):577-90. [CrossRef]

Najdanović JG, Cvetković VJ, Stojanović ST, Vukelić-Nikolić MĐ, Živković JM, Najman SJ. Vascularization and osteogenesis in ectopically implanted bone tissue-engineered constructs with endothelial and osteogenic differentiated adipose-derived stem cells. World J Stem Cells 2021;13(1):91-114. [CrossRef] [PubMed]

Najman SJ, Cvetković VJ, Najdanović JG, Stojanović S, Vukelić-Nikolić MĐ, Vučković I, et al. Ectopic osteogenic capacity of freshly isolated adipose-derived stromal vascular fraction cells supported with platelet-rich plasma: A simulation of intraoperative procedure. J Craniomaxillofac Surg 2016;44(10):1750-60. [CrossRef] [PubMed]

New SA, Robins SP, Campbell MK, Martin JC, Garton MJ, Bolton-Smith C, et al. Dietary influences on bone mass and bone metabolism: further evidence of a positive link between fruit and vegetable consumption and bone health? Am J Clin Nutr 2000;71(1):142-51. [CrossRef] [PubMed]

Noda Y, Kaneyuki T, Mori A, Packer L. Antioxidant activities of pomegranate fruit extract and its anthocyanidins: delphinidin, cyanidin, and pelargonidin. J Agric Food Chem 2002;50(1):166-71. [CrossRef] [PubMed]

Ostos Mendoza KC, Garay Buenrostro KD, Kanabar PN, Maienschein-Cline M, Los NS, Arbieva Z, et al. Peonidin-3-O-glucoside and resveratrol increase the viability of cultured human hFOB Osteoblasts and alter the expression of genes associated with apoptosis, osteoblast differentiation and osteoclastogenesis. Nutrients 2023;15(14):3233. [CrossRef] [PubMed]

Rossi A, Serraino I, Dugo P, Paola RD, Mondello L, Genovese T, et al. Protective effects of anthocyanins from blackberry in a rat model of acute lung inflammation. Free Radic Res 2003; 37(8):891–900. [CrossRef] [PubMed]

Sakaki J, Melough M, Lee SG, Kalinowski J, Koo SI, Lee SK, et al. Blackcurrant supplementation improves trabecular bone mass in young but not aged mice. Nutrients 2018;10(11):1671. [CrossRef] [PubMed]

Salhotra A, Shah HN, Levi B, Longaker MT. Mechanisms of bone development and repair. Nat Rev Mol Cell Biol 2020;21(11):696-711. [CrossRef] [PubMed]

Saulite L, Jekabsons K, Klavins M, Muceniece R, Riekstina U. Effects of malvidin, cyanidin and delphinidin on human adipose mesenchymal stem cell differentiation into adipocytes, chondrocytes and osteocytes. Phytomedicine 2019;53:86-95. [CrossRef] [PubMed]

Scalzo J, Currie A, Stephens J, McGhie T, Alspach P, Horticulture and food research institute of New Zealand limited hortresearch. The anthocyanin composition of different Vaccinium, Ribes and Rubus genotypes. Biofactors 2008;34(1):13-21. [CrossRef] [PubMed]

Sharma C, Kumari T, Arya KR. Ethnopharmacological survey on bone healing plants with special references to Pholidota articulata and Coelogyne cristata (Orchidaceae) used in folk tradition of Kumaon Uttarkhand India. Int J Pharma Res Health Sci 2014;2:185-90.

Shimizu S, Matsushita H, Morii Y, Ohyama Y, Morita N, Tachibana R, et al. Effect of anthocyanin-rich bilberry extract on bone metabolism in ovariectomized rats. Biomed Rep 2018;8(2):198-204. [CrossRef] [PubMed]

Simpson CR, Kelly HM, Murphy CM. Synergistic use of biomaterials and licensed therapeutics to manipulate bone remodelling and promote non-union fracture repair. Adv Drug Deliv Rev 2020; 160:212-33. [CrossRef] [PubMed]

Speer H, D'Cunha NM, Alexopoulos NI, McKune AJ, Naumovski N. Anthocyanins and human health-a focus on oxidative stress, inflammation and disease. Antioxidants (Basel) 2020;9(5):366. [CrossRef] [PubMed]

Steyn WJ. Prevalence and functions of anthocyanins in fruits. In: Gould K, Davies K, Winefield C, editors. Anthocyanins, biosynthesis, functions, and aplications. New York: Springer; 2009. p. 85-105 [CrossRef]

Suneetha J, Prasanthi S, Ramarao N, Seetharami BVA, Reddi TVV. Indigenous phytotherapy for bone fractures from Eastern Ghats. Indian J Tradit Knowl 2011;10(3):550–3.

Tabart J, Kevers C, Evers D, Dommes J. Ascorbic acid, phenolic acid, flavonoid, and carotenoid profiles of selected extracts from Ribes nigrum. J Agric Food Chem 2011;59(9):4763-70. [CrossRef] [PubMed]

Teng H, Fang T, Lin Q, Song H, Liu B, Chen L. Red raspberry and its anthocyanins: Bioactivity beyond antioxidant capacity. Trends Food Sci Techol 2017;66:153-65. [CrossRef]

Thilavech T, Ngamukote S, Belobrajdic D, Abeywardena M, Adisakwattana S. Cyanidin-3-rutinoside attenuates methylglyoxal-induced protein glycation and DNA damage via carbonyl trapping ability and scavenging reactive oxygen species. BMC Complement Altern Med 2016;16:138. [CrossRef] [PubMed]

Vega EN, García-Herrera P, Ciudad-Mulero M, Dias MI, Matallana-González MC, Cámara M, et al. Wild sweet cherry, strawberry and bilberry as underestimated sources of natural colorants and bioactive compounds with functional properties. Food Chemistry 2023;414:135669. [CrossRef] [PubMed]

Vukelić-Nikolić MĐ, Najman SJ, Vasiljević PJ, Jevtović-Stoimenov TM, Cvetković VJ, Andrejev MN, et al. Osteogenic capacity of diluted platelet-rich plasma in ectopic bone-forming model: Benefits for bone regeneration. J Craniomaxillofac Surg 2018;46(11):1911-8. [CrossRef] [PubMed]

Wang Z, Wang D, Yang D, Zhen W, Zhang J, Peng S. The effect of icariin on bone metabolism and its potential clinical application. Osteoporos Int 2018;29(3):535-44. [CrossRef] [PubMed]

Wei Z, Yang H, Shi J, Duan Y, Wu W, Lyu L, et al. Effects of different light wavelengths on fruit quality and gene expression of anthocyanin biosynthesis in blueberry (Vaccinium corymbosm). Cells 2023;12(9):1225. [CrossRef] [PubMed]

Welch A, MacGregor A, Jennings A, Fairweather-Tait S, Spector T, Cassidy A. Habitual flavonoid intakes are positively associated with bone mineral density in women. J Bone Miner Res 2012;27(9):1872-8. [CrossRef] [PubMed]

Xue L, Otieno M, Colson K, Neto C. Influence of the growing region on the phytochemical composition and antioxidant properties of north american cranberry fruit (Vaccinium macrocarpon Aiton). Plants 2023;12(20):3595. [CrossRef] [PubMed]

Yang J, Zhang L, Ding Q, Zhang S, Sun S, Liu W, et al. Flavonoid-Loaded Biomaterials in Bone Defect Repair. Molecules 2023;28(19):6888. [CrossRef] [PubMed]

Yang W, Guo Y, Liu M, Chen X, Xiao X, Wang S, et al. Structure and function of blueberry anthocyanins: A review of recent advances. J Funct Foods 2022;88:104864. [CrossRef]

Zalloua PA, Hsu YH, Terwedow H, Zang T, Wu D, Tang G, et al. Impact of seafood and fruit consumption on bone mineral density. Maturitas 2007;56(1):1-11. [CrossRef] [PubMed]

Zeng Z, Li H, Luo C, Hu W, Weng TJ, Shuang F. Pelargonidin ameliorates inflammatory response and cartilage degeneration in osteoarthritis via suppressing the NF-κB pathway. Arch Biochem Biophys 2023; 743:109668. [CrossRef] [PubMed]

Zhai ZJ, Li HW, Liu GW, Qu XH, Tian B, Yan W, et al. Andrographolide suppresses RANKL-induced osteoclastogenesis in vitro and prevents inflammatory bone loss in vivo. Br J Pharmacol 2014;171(3):663-75. [CrossRef] [PubMed]

Zhang J, Liu Z, Luo Y, Li X, Huang G, Chen H, et al. The role of flavonoids in the osteogenic differentiation of mesenchymal stem cells. Front Pharmacol 2022; 13:849513. [CrossRef] [PubMed]

Zheng X, Mun S, Lee SG, Vance TM, Hubert P, Koo SI, et al. Anthocyanin-rich blackcurrant extract attenuates ovariectomy-induced bone loss in mice. J Med Food 2016;19(4):390-7. [CrossRef] [PubMed]

Živković JM, Najman SJ, Vukelić MĐ, Stojanović S, Aleksić M, Stanisavljević M, et al. Osteogenic effect of inflammatory macrophages loaded onto mineral bone substitute in subcutaneous implants. Arch Biol Sci 2015;67(1):173-86. [CrossRef]

Živković JM, Stojanović ST, Vukelić-Nikolić MĐ, Radenković MB, Najdanović JG, Ćirić M, et al. Macrophages' contribution to ectopic osteogenesis in combination with blood clot and bone substitute: possibility for application in bone regeneration strategies. Int Orthop 2021;45(4):1087-95. [CrossRef] [PubMed]

Objavljeno
2025/02/07
Rubrika
Pregledni rad