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Abstract 

Today, we are witnessing an explosion of scientific concepts in cancer chemotherapy. It 
has been considered for a long time that genetic instability in cancer should be treated with drugs 
that directly damage the DNA. Understanding the molecular basis of malignant diseases shed 
light on studying phenotypic plasticity. In the era of epigenetics, many efforts are being made to 
alter the aberrant homeostasis in cancer without modifying the DNA sequence. One such strategy 
is modulation of the lysine acetylome in human cancers. To remove the acetyl group from the 
histones, cells use the enzymes that are called histone deacetylases (HDACs). The disturbed 
equilibrium between acetylation and deacetylation on lysine residues of histones can be 
manipulated with histone deacetylase inhibitors (HDACi).  

Throughout the review, an effort will be made to present the mechanistic basis of targeting 
the HDAC isoforms, discovered selective HDAC inhibitors, and their therapeutical implications 
and expectations in modern drug discovery. 
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Introduction 

The life of each cell is extremely turbulent. The control of discordant cell responses 
is mediated through communication between various biomolecules, starting from gene 
activation or repression, synthesis of mRNA and proteins. Diverse extracellular signals 
may induce changes in protein synthesis, cellular phenotype and integrity, metabolism 
and eventually cell survival. Protein biosynthesis in human cells is a costly process and 
not all cellular stimuli will induce de novo synthesis of proteins. Timewise, 
posttranslational modifications of certain proteins such as histones present effective 
control of cellular events via regulation of gene expression (1). Histones are major protein 
components of chromatin. Octamers consisting of two copies of core histones (H2A, 
H2B, H3 and H4) wrapped with DNA constitute functional units of chromatin – 
nucleosomes. Being rich in lysine and arginine residues, histone's posttranslational 
modifications and consequent alteration of net charge of histones provide the basis for 
epigenetic regulation of gene expression, either by alteration of chromatin compaction or 
by the recruitment of specific proteins involved in transcriptional regulation (2,3). 
Numerous histone marks are mapped in human cells and they are considered as epigenetic 
regulators of gene expression. Small endogenous molecules such as acetyl, methyl, 
benzoyl, phosphate, crotonyl, succinyl groups can be covalently attached to the amino 
acid residues (particularly lysine and arginine) (4,5). The modified charged amino acid 
residues on histones may alter the DNA compaction, thus modifying the gene 
transcription (6).  

The occurrence of histone marks is catalyzed by histone modifying enzymes, which 
can be classified into three major groups. Histone writers are the enzymes that catalyze 
the covalent attachment of the aforementioned small molecules, such as histone 
methyltransferases (HMTs), histone acetyltransferases (HATs). The second group are 
histone erasers, which modify the histones in the opposite way to writers, and these are 
histone demethylases (HDMs), histone deacetylases (HDACs). The third group of histone 
modifying enzymes is referred to as histone readers, which recognize histone 
modifications and promote the recruiting of numerous chromatin modifiers and 
transcription factors (7). The unique language of histone modifications (also known as a 
histone code) changes the function of genes without altering the DNA sequence. 

The modification of histones by acetylation plays a key role in the epigenetic 
regulation of gene expression and is controlled by the balance between histone 
deacetylases (HDACs) and histone acetyltransferases (HAT). Histone deacetylases are 
the enzymes that remove the acetyl group from lysine residues in histone proteins on 
DNA and are widely studied epigenetic erasers due to their involvement in the 
pathophysiology of numerous malignancies (e.g. breast cancer, pancreatic cancer, 
hematological cancers) (8,9). Their different tissue distribution, subcellular localization 
and diverse catalytic activities opened many avenues for drug discovery campaigns of 
selective HDAC inhibitors. It is worth mentioning that HDACs enzymes are classified in 
four different classes, according to their homology sequence (7, 8). The classes I, II and 
IV are zinc-dependent metalloenzymes, which use the Zn2+ ion for catalytic hydrolysis of 
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acetyllysine moieties. Class I is comprised of four isoforms (HDAC1, HDAC2, HDAC3 
and HDAC8) (12). Class II is divided in two subclasses – IIa and IIb. The isoforms 
belonging to subclass IIa are HDAC4, HDAC5, HDAC7 and HDAC9, whereas HDAC6 
and HDAC10 belong to subclass IIb (11,13). The third class of HDAC enzymes belongs 
to nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases, commonly known 
as sirtuins, and it includes 7 isoforms (SIRT1-7) (14). The class IV HDAC is comprised 
of the unique HDAC11 isoform (15). It should be noted that HDACs are hydrolyzing 
other histone acyl- marks, such as N-terminal myristoyllysine and myristoylglycine, 
crotonyl, octanoyl etc. (16) which suggests their roles in metabolic homeostasis of the 
cell (17). 

HDAC inhibitors (HDACis) are a class of compounds that increase the acetylation 
of lysine residues on histone proteins, as well as other proteins, by inhibiting the activity 
of HDACs enzymes. Histone deacetylase inhibitors induce growth arrest, differentiation 
and apoptosis of cancer cells ex vivo (18), as well as in vivo in tumor-bearing animal 
models (19), and are now undergoing clinical trials as anti-tumor agents. HDACis 
comprise structurally diverse compounds that are a group of targeted anticancer agents. 
The first of these new HDACi, vorinostat (suberoylanilide hydroxamic acid), has received 
Food and Drug Administration approval for treating patients with cutaneous T-cell 
lymphoma. In this review, we will outline the medicinal chemistry of selective Histone 
DeACetylase inhibitors (HDACi), targeting specific isoforms within classes, as well as 
the rationale for their use in certain therapeutic areas. 

Mechanism of acetyl group hydrolysis by HDACs 

The mechanism of acetyl group hydrolysis by classical Zn2+-dependent HDACs 
was first studied in bacterial histone deacetylase-like protein (20). There have been 
numerous mechanistic explanations proposed on the acetyl group cleavage from lysine 
side chains on histones. The catalytic site of HDACs is described as 14Å long tube-like 
pocket (Figure 1, sketched with brown tube) in which the catalytic Zn2+ ion (chelated 
with two conserved aspartates and one histidine) is located at the bottom of the channel 
(21). When N-acetyllysine enters the catalytic pocket (stage [A]), the carbonyl oxygen 
coordinates Zn2+ ion, whereas the neighboring histidine deprotonates nucleophilic water. 
In the next stage [B], the generated oxyanion is chelated to the Zn2+ and the intermediate 
is hydrogen bonded to the conserved tyrosine. Finally, in the stage [C] the intermediate 
is decomposed to the acetyl anion and protonated lysine. The active site of HDACs is 
therefore composed of conserved histidine-aspartate dyads which regulated the pH of the 
microenvironment (22), tyrosine and Zn2+ ion, all of which are crucial for the HDAC 
catalytic activity.  
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Figure 1.  Metal-dependent hydrolysis of the acetylated lysine residue by histone  

 deacetylase (hydrolytic model proposed from HDLP enzyme) –  

 adapted from the reference (22) 

Slika 1.  Metal-zavisna hidroliza acetilovanih lizina posredovana histon  

 deacetilazama (pretpostavljeni model hidrolize na osnovu HDLP  

 enzima) – prilagođeno na osnovu ref. (22) 

 

Sirtuins contain a highly conserved catalytic core located at the interface of the two 
domains of enzyme structure – Rossmann fold domain and zinc-binding domain (Figure 
2). In contrast to the other classes of HDACs, the mechanism of deacetylation of sirtuins 
(class III of HDACs) is Zn2+ independent and implies the presence of NAD+. Although 
NAD+ is a redox-active metabolite, it is important to note that during deacetylation 
reaction catalyzed by sirtuins, there is no change of oxidation states of reactants. A 
simplified mechanism of the reaction is depicted in Figure 2. Once NAD+ and                            
N-acetyllysine peptide are bound, the carbonyl oxygen of acetyl group attacks the 
anomeric position of ribose, cleaving nicotinamide and forming alkylimidate 
intermediate. After deprotonation of ribose at 2’-OH induced by the presence of 
conserved histidine residue as a general base, cyclic intermediate is formed which 
hydrolyze in the last step of reaction to produce 2’-O-acetyl-ADP-ribose. The formation 
of nicotinamide during catalysis is reversible, and nicotinamide itself is a pan-sirtuin 
inhibitor (23). 
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Figure 2.  Representation of sirtuin structure (left) and mechanism of NAD+- 

 dependent hydrolysis of the acetylated lysine residue (right). Yellow  

 cartoon represents peptide substrate, NAD+ is depicted in green sticks and  

 conserved histidine residue in blue sticks 

Slika 2.  Prikaz strukture sirtuina (levo) i mehanizma NAD+-zavisne hidrolize  

 acetilovanog lizina (desno). Žuto je obojen peptidni supstrat, struktura  

 NAD+ je označena zelenom bojom i konzervirani histidin je prikazan  

 plavom bojom 

 

HDAC inhibitors in drug discovery 

The story of the first discovered HDAC inhibitor (SAHA, suberoylanilide 
hydroxamic acid, Vorinostat) remains one of the textbook examples of how serendipity 
may lead to inspiring breakthroughs in medicinal chemistry. SAHA was discovered after 
observations that polar solvent DMSO (dimethylsulfoxide) may induce differentiation of 
murine erythroleukemia cells (MELC) to normoblasts which synthesize hemoglobin (24). 
Further structure-activity relationship studies led to the conclusion that bishydroxamate 
derivatives inhibit the growth of MELC and lead to induced erythroid differentiation. 
(Figure 3A). (25)  
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Figure 3.  A. Two-dimensional presentation of HDAC inhibitor (SAHA) inside the  

 binding pocket of HDAC (the amino acids which coordinate Zn2+ ion at the  

 bottom of the catalytic pocket are omitted for clarity); B. Three- 

 dimensional presentation of the SAHA anchored in the HDAC binding  

 pocket 

Slika 3.  A. Dvodimenzionalni prikaz inhibitora Histon Deacetilaze (SAHA) unutar  

 vezivnog džepa HDAC (aminokiseline koje koordiniraju Zn2+ jon na dnu  

 džepa  su izostavljene zbog jednostavnijeg prikaza); B. Trodimenzionalni  

 prikaz strukture SAHA molekula usidrene u vezivno mesto HDAC enzima 

 

From a mechanistic point of view, hydroxamic acid is a well-known zinc binding 
group (ZBG) which coordinates the catalytic zinc ion (Zn2+) in many human enzymes. 
Hydroxamic acids are delivered to the bottom of the pocket via aliphatic or aromatic 
linkers, which mimic the lysine side chain (Figures 3B). The CAP (capping, surface 
recognition) group of the HDAC inhibitors interacts with the amino acid residues located 
at the entrance of the catalytic pocket and their presence/bulkiness are considered as 
important structural features for selective inhibition of certain HDACs. 

First sirtuin inhibitors were discovered in 2001 and since then have represented an 
active area of research (26). Two decades of inhibitor development have resulted in a 
plethora of chemical scaffolds. Unfortunately, efforts have resulted in only one clinical 
candidate (27). Structural studies have indicated that many sirtuin inhibitors interact with 
NAD+-binding site (especially nicotinamide binding sub-pocket) and/or peptide 
substrate-binding site. High conservation between these two sites across the sirtuin family 
represents a significant challenge for the optimization of inhibitors’ isoform selectivity. 
Besides selectivity, achieving low nanomolar potency and optimal pharmacokinetics is a 
long-standing challenge in sirtuin inhibitor drug discovery (27). Sirtuin inhibitors could 
be roughly divided into two classes: small molecule and mechanism-based inhibitors. 
Small molecule inhibitors non-covalently interact with amino acid residues from one or 
both binding sites in the sirtuin catalytic core. On the other hand, mechanism-based 
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inhibitors are usually peptide or peptidomimetic molecules that are designed in such a 
way to represent substrates for sirtuin catalyzed deacylation. Upon the initiation of the 
reaction, mechanism-based inhibitors produce longer-lived (or stalled) intermediates that 
act as bisubstrate (interacting with both binding sites) inhibitory species. The general 
strategy for the design of mechanism-based inhibitors includes the introduction of 
warhead moieties such as thioamide or thiocarbamoyl moiety and some derivatives are 
reviewed in section 8 (28).  

Selective class I HDAC inhibitors 

Class I of HDAC inhibitors are considered as prototypical epigenetic inhibitors. 
The nuclear localization of the class I HDACs makes them available for associations in 
transcriptional complexes (such as NuRD, Sin3A, CoREST) (29). These transcriptional 
complexes regulate cell survival and death, autophagy, changes in the cell morphology 
and cell differentiation. In recent years, drugging the HDAC1/HDAC2 isoforms has been 
validated for the reversal of the HIV latency (30).  

The challenge in the development of specific class I HDAC inhibitors lies in the 
structural biology of these enzymes. The first two isoforms, HDAC1 and HDAC2 share 
the sequence homology of 86% (31). Owing to this, many reported class I HDAC 
inhibitors show non-selective profiles. The examples of the class I HDAC inhibitors are 
presented in Figure 4. Compound 1 (Entinostat) was discovered as a class I HDAC 
inhibitor, with an inhibitory profile against HDAC1-3 isoforms and low potency to 
HDAC8. Further crystallography studies with class I HDACs shed light on an additional 
foot pocket close to the catalytic site. The exploitation of the additional hydrophobic 
pocket by introducing the aromatic rings in position 5 of 2-aminoanilides (compound 2, 
Figure 4) improved the selectivity towards HDAC1/HDAC2 isoforms. Merck & Co 
employed a parallel medicinal chemistry strategy to synthesize, screen and identify 
selective HDAC3 inhibitors. They identified compound 3 in which the substitution of 2-
amino group with 2-methylthio group within ZBG clearly demonstrates selective HDAC3 
inhibitory profile (32). 

 

 

Figure 4.  Chemical structures of class I HDAC inhibitors 

Slika 4.  Hemijske strukture inhibitora HDAC I klase  
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It is interesting to mention that the HDAC8 isoform is the most studied isoform 
from a crystallographic point of view. The Protein Data Bank website 
(https://www.rcsb.org/) has more than 90 deposited structures of HDAC8 in complex 
with diverse inhibitors. HDAC8 has several features distinct from other isoforms among 
class I HDACs. The most important structural feature is the flexible surface loop L1 at 
the N-terminal portion (amino acids from 30 to 36) (33). Moreover, the leucine amino 
acid residues within the catalytic pocket of HDAC1-3 are substituted by tryptophan in 
HDAC8, making the Zn2+ ion at the bottom of the pocket hardly targeted by voluminous 
2-aminoanilides (26, 27). The outer rim of the catalytic cavity is shaped with F152, F208 
and M274, where the F152 residue acts as a gatekeeper. Hence, the most common scaffold 
used in the design of selective HDAC8 inhibitors is meta-substituted phenylhydroxamate 
(36). Several selective HDAC8 inhibitors are presented in Figure 5. Interested readers 
are referred to references (37–42) where the most recent selective HDAC8 inhibitors are 
disclosed. Compound 4 (PCI-34051) is developed as a nanomolar HDAC8 inhibitor                    
(IC50 = 10 nM) with more than 200 times lower affinities to other HDACs (43). An 
interesting synthetic approach by the use of Cu (I)-catalyzed azide−alkyne cycloaddition 
(known as click chemistry) employed by T. Suzuki et al. (44) developed selective HDAC8 
nanomolar inhibitor 5 which inhibits the growth of the neuroblastoma cells (Figure 5). 

 

 

Figure 5.  Chemical structures of selective HDAC8 inhibitors 

Slika 5.  Hemijske strukture selektivnih inhibitora HDAC8 izoforme 

 

Selective class IIa HDAC inhibitors 

The class IIa HDACs is known to shuttle between the nucleus and the cytoplasm. 
They exert lower deacetylase activities than class I HDACs, due to the replacement of 
catalytic tyrosine with histidine (Y976H) (45). The endogenous substrates for these 
isoforms have recently been disclosed, such as myosin heavy chain (MyHC) isoforms, 
peroxisome proliferator-activated receptor gamma co-activator 1alpha (PGC-1α), and 
heat shock cognate 71 kDa protein (Hsc70) (46). Nowadays, there are validated data that 
support targeting class IIa HDACs in diabetes (47), neurological diseases (48) and heart 
failure (49).  
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In 2013, Lobera et al. (50) ran a high-throughput screening of the two-million 
GlaxoSmithKline’s library of compounds and discovered inhibitors with 
trifluoromethyloxadiazolyl moiety as a nonchelating ZBG (compound 6, Figure 6). It is 
demonstrated that one fluorine and oxygen from the 1,2,4-oxadiazole interact with Zn2+ 
ion via weak electrostatic interactions. By the end of 2019, Novartis had published highly 
potent class IIa HDACi (compound 7) which presents a valuable chemical tool for 
studying skeletal muscle atrophy and sarcopenia (46). 

 

 

Figure 6.  Chemical structures of class IIa HDAC inhibitors 

Slika 6.  Hemijske strukture inhibitora HDAC IIa klase  

Selective class IIb HDAC inhibitors 

Histone deacetylases 6 and 10 differ from other HDAC classes for diverse reasons. 
Both isoforms contain two domains, HDAC6 has two catalytic deacetylase domains, 
however, HDAC10 has one deacetylase domain and another one deficient in amino acids 
required for deacetylase activity (51). Furthermore, HDAC6 and HDAC10 isoforms are 
mainly located in the cytoplasm. HDAC6 controls the acetylation status of alpha-tubulin 
and/or microtubules (52) and HDAC10 is deacetylating polyamines, such as                            
N8-acetylspermidine (51). HDAC6 is also referred to as tubulin-deacetylase (TDAC), 
whereas HDAC10 is considered as polyamine deacetylase (PDAC). The architecture of 
these isoforms is well-studied by Christianson, whose crystallography studies on 
zebrafish models (PDB codes HDAC6: 5EDU and HDAC10: 5TD7) (53,54) expanded 
our understanding of the protein structure, function and pharmacomodulation of class IIb 
HDACs. Studies with peptide constructs revealed that the second catalytic domain (CD2) 
of HDAC6 is responsible for the tubulin-deacetylase activity and it is considered as a 
valid target for computer-aided drug discovery (CADD) campaigns. 

It is proposed that every pharmacophoric feature (chemistry of the ZBG, linker and 
CAP group) contributes to the selectivity of the HDAC6 inhibitors (55). Computational 
(56,57) and experimental (44, 45) studies published in our group show that both the alkyl-
hydroxamates (8, 9) and phenylhydroxamates (10) may inhibit the HDAC6 isoform 
selectively (Figure 7). Apart from hydroxamic acid derivatives, 3-hydroxypyridin-2-
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thiones (11) are reported as ZBG which specifically inhibits the HDAC6 isoform (60). 
Compounds with significantly voluminous CAP group, such as tubacin (9), were 
identified as valuable chemical tools to study HDAC6 inhibition. Surprisingly, capless 
HDAC6 inhibitors (Figure 7) demonstrated nanomolar inhibitory profiles, illustrating the 
importance of the entropic contribution to HDAC6-inhibitor binding selectivity (61). 
These fragment-like molecules (12, 13) inhibit the HDAC8 isoform in submicromolar 
concentrations, which should be regarded as an important task while designing novel 
selective HDAC6 inhibitors. 

 

 

Figure 7.  Chemical structures of selective HDAC6 inhibitors 

Slika 7.  Hemijske stukture selektivnih inhibitora HDAC6 

 

Polyamine deacetylase (HDAC10) was studied in detail by Miller et all (62). This 
group found that tubastatin A (compound 15, previously shown as a selective HDAC6 
inhibitor, (63)) was a more potent HDAC10 inhibitor, due to the presence of basic 
nitrogen in the CAP group. This tertiary nitrogen establishes a salt bridge with the 
gatekeeping residue (Glu272) which is required for polyamine deacetylase activity. When 
tetrahydro-β-carboline scaffold is replaced with the 3,4-dihydropyran (compound 16), the 
compounds show selectivity towards the HDAC6 isoform (Figure 8).                            
N8-acetylspermidine derivatives in complex with zebrafish HDAC10 were studied by X-
ray crystallography (64) and it was found that the most potent compound is thioacetate 
prodrug 16 which is hydrolyzed to give thiolate active compound, as an HDAC10 
inhibitor (17, Figure 8). 
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Figure 8.  Chemical structures of selective HDAC10 inhibitors (compounds 14, 15 and 17) 

Slika 8.  Hemijske strukture selektivnih inhibitora HDAC10 (jedinjenja 14, 15 i 17) 

 

Selective class IV HDAC inhibitors 

The single representative in class IV, HDAC11, is the smallest isoform among 
metal-dependent HDACs. It has recently been shown that HDAC11 has a more efficient 
glycine demyristoylation activity than deacetylase activity. Its implication in the IFN-
signaling pathway has become advantageous for the drug design of novel antiviral and 
anticancer compounds (51, 52). 

There is a small number of available selective HDAC11 inhibitors, some of which 
are presented in Figure 9. It is assumed that the natural product garcinol 18 could chelate 
Zn2+ ion via the enol form of the β-diketone moiety or with the catechol moiety (67). An 
interesting finding was recently published by Chellappan and colleagues, demonstrating 
that selective HDAC11 inhibitors (compound 19) are potent in preventing the growth of 
adenocarcinoma stem cells when co-cultured with cancer associated fibroblasts (CAFs) 
(68). To conclude, compounds 19 and 20 are potent lysine demyristoylases (69), whereas 
compound 20 is pure and cell-permeable selective HDAC11 inhibitor. 
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Figure 9.  Chemical structures of selective HDAC11 inhibitors 

Slika 9.  Hemijske strukture selektivnih inhibitora HDAC11 

 

Selective class III HDAC inhibitors (sirtuins) 

Due to their involvement in many biological processes in the human organism, 
seven members of the sirtuins family are considered as potential targets in the treatment 
of several diseases, including cancer, neurodegenerative and cardiovascular diseases (70). 
In this section, some of the most important achievements and latest breakthroughs in the 
field of the medicinal chemistry of sirtuin inhibitors are presented. 

 Non-selective sirtuin inhibitors 

According to the sequence alignment of seven sirtuins, the most conserved domains 
are recorded between SIRT1-3 isoforms, making it particularly difficult to achieve the 
ultimate goal of selectivity (71). Non-selective sirtuin inhibitors presented in this section 
of the review are depicted in Figure 10. Back in the early 2000s, using phenotypic yeast-
based high-throughput screenings, two groups independently discovered the first SIRT 
inhibitors – splitomicin (compound 21) and sirtinol (compound 22) (26,72). Both 
compounds were based on a β-naphtol scaffold. Considering the sensitivity on hydrolysis 
of the δ-lactone moiety in splitomicin, further efforts resulted in cambinol, 23, and its 
derivatives as a well-suited compound for in vitro studies. Cambinol was shown to be 
well tolerated and to inhibit the growth of Burkitt lymphoma xenografts in mice (73). 
Salermid, 24, reverse amide of sirtinol, 22, was designed utilizing CADD techniques (74). 
Another group of non-selective inhibitors identified through computational approaches, 
specifically virtual screening, was the thiobarbiturate group of inhibitors. Among this 
group, indole derivative, compound 25, exhibited slight selectivity towards SIRT1 (75). 

Tenovins are another class of non-selective SIRT1/2 inhibitors, discovered through 
cell-based screening aimed at discovering tumor suppressor p53 activators. Among 
tenovins, Tenovin-6, 26, is now commonly used in in vitro studies due to favorable 
solubility (76). The extensive anticancer activity of tenovin-6 has been thoughtfully 
studied in the last years (77). Pseudopeptidic mechanism-based inhibitors based on 
thiourea, 27, were reported as well (78). Some of the most potent small molecule 
SIRT1/2/3 inhibitors reported so far were thieno[3,2-d]pyrimidine-6-carboxmamides 
(e.g. compound 28).  
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Figure 10.  Chemical structures of non-selective sirtuin inhibitors. 

Slika 10. Hemijske strukture neselektivnih inhibitora sirtuina 
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Crystallographic analysis indicated that common carboxamide of 28 binds in the 
nicotinamide portion of the NAD+-binding site and the aliphatic portions of the inhibitors 
extend through the substrate channel (79). 

As possible sirtuin inhibitors, natural products draw significant attention (reviewed 
elsewhere) (79). Bichalcones isolated from medicinal plant Rhus pyroides (e.g. 
rhuschalcone I analogue, 29), were recently shown to be SIRT1/2 inhibitors (80). 
Xanthonoids isolated from Garcinia mangostana (e.g. γ-mangostin, 30) were recently 
discovered to be potent SIRT1-3 inhibitors (81). Phloroglucinol derivative extracted from 
Hypericum perforatum – hyperforin and its synthetic derivative aristoforin, 31 were 
proven to be SIRT1/SIRT2 inhibitors (82). 

Selective SIRT1 inhibitors 

The only sirtuin inhibitor that reached clinical studies was the moderately selective 
SIRT1 inhibitor EX-527, also known as Selisistat 32 (Figure 11). Namely, SIRT1 
inhibitor EX-527 was tested in a clinical trial for Huntington’s disease (83). This clinical 
trial was dropped after phase II, even though EX-527 was found to be safe and well 
tolerated. EX-527 was discovered in high-throughput screening on SIRT1 and it was 
described as a low molecular weight, cell-permeable, orally bioavailable, and 
metabolically stable inhibitor (84). The very first reported co-crystal structure of SIRT1 
was in a complex with EX-527, which helped to decipher the structure-activity 
relationship of EX-527 and its derivatives. Indole moiety of EX-527 interacts with 
substrate binding site, while amide moiety is responsible for displacing nicotinamide of 
NAD+ and it is crucial for the inhibitory activity of this group of inhibitors (85). Indole 
appears to be one of the privileged scaffolds in selective SIRT1 inhibitors design (25, 27) 
since the presence of this heterocycle in the structure of SIRT inhibitors shifts selectivity 
towards SIRT1 (27,86).  
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Figure 11.  Chemical structures of selective SIRT1 and SIRT2 inhibitors. Blue fields  

 represent moieties interacting with substrate binding site, while sand color  

 fields depict moieties interacting with “selectivity pocket” of SIRT2 

Slika 11.  Hemijske strukture selektivnih SIRT1 i SIRT2 inhibitora. Plavo su  

 Označene Grupe koje intereaguju sa vezivnim mestom za supstrat, dok su  

 bojom peska označene grupe koje intereaguju sa ,,selektivnim džepom” u  

 okviru SIRT2  izoforme 
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In the group of mechanism-based inhibitors, one example is compound 33. 
Although this inhibitor should not be strictly considered as a mechanism-based inhibitor, 
it represents the most selective SIRT1 inhibitor reported so far in this group of sirtuin 
inhibitors (87). 

Selective SIRT2 inhibitors 

The latest breakthrough in the field of medicinal chemistry of selective SIRT2 
inhibitors is the discovery of a hydrophobic “selective pocket” in the structure of the 
SIRT2 (88). This discovery provided a rationale for the design of the selective SIRT2 
inhibitors and many inhibitors exploiting the “selectivity pocket” have been described. 

There are several groups of structurally diverse inhibitors which bind to the 
“selectivity pocket”, confirmed by crystallographic analysis (Figure 11). One of the first 
discovered was the aminothiazole class of inhibitors (so called SirReals). SirReal2 
(compound 34, Figure 11) was one of the most potent and selective inhibitors in this class 
(88). 2-((4,6-dimethylpyrimidin-2-yl)thio)acetamide motif of aminothiazole inhibitors 
interacts with “selectivity pocket” and its bioactive conformation was confirmed to 
acquire intramolecular hydrogen bonding (dashed lines – Figure 11). SirReal2 only 
partially occupied the substrate binding site, which inspired further development of                       
2-((4,6-dimethylpyrimidin-2-yl)thio)acetamide ligands, 35 using structure extension 
strategy in order to further exploit the substrate binding site (89,90). The discovery of                     
2-((4,6-dimethylpyrimidin-2-yl)thio)acetamide motif inspired the design of azido-
thalidomide-conjugate proteolysis targeting chimera (PROTAC) inhibitor, 36, which 
could boost future biological studies on SIRT2 (91). 

Besides 2-((4,6-dimethylpyrimidin-2-yl)thio)acetamide motif, there are several 
reports on other SIRT2 inhibitors which exploit the “selectivity pocket”. One group of 
highly selective thienopyrimidinones, 37, was discovered using structure-based virtual 
screening, and characterized in terms of the binding mode through crystallographic 
studies (92). Another group of anilinobenzamides was also described to bind to a 
“selectivity pocket” (compound 38) (93). This group was further optimized into the 
mechanism-based inhibitor, 39, by exploiting substrate binding site which resulted in 
highly potent and selective inhibitor with antiproliferative activity in breast cancer cells 
and potent neurite outgrowth activity in neuro-2a (N2a) cells (94). Another example of 
inhibitor binding to the “selectivity pocket” is 40, identified through the high-throughput 
screen (95). Among mechanism-based inhibitors which occupy the “selectivity pocket” 
of SIRT2, thiomyristoyl compound 41 was thoughtfully tested in various human cancer 
cells and mouse models of breast cancer (96). The results indicated that 41 has broad 
anticancer effects and limited toxicity, qualifying this group of inhibitors as promising 
for future development. Related groups of potent, selective, stable in serum and water-
soluble inhibitors have recently been reported (97).  
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Selective SIRT3 inhibitors 

A SIRT1 activator SRT1720 (compound 42, Figure 12) was one of the first 
reported SIRT3 inhibitors with significant potency and selectivity (98). An interesting 
strategy for developing SIRT3 peptide inhibitor, which implies the introduction of 
triphenylphosphonium moiety as a mitochondrial targeting moiety, was used to yield non-
selective SIRT1-3 inhibitor with SIRT3 specific biological response (compound 43, 
Figure 12). This compound has shown comparable effects to less potent, but more SIRT3 
selective cambinol analog 44 on the induction of autophagy and cell death in diffuse large 
B cell lymphomas (99). 

Thiourea mechanism-based inhibitors, 45, derived from a group of inhibitors 
represented by 33, with significant selectivity towards SIRT3 were also described (100).  

Selective SIRT4 inhibitors 

SIRT4 has remained without a selective inhibitor until the moment of writing this 
review. With crystal structure and activity assays for SIRT4 emerging just recently, it is 
expected that the discovery of selective inhibitors will happen soon enough. Nicotinamide 
and suramin, as pan sirtuin inhibitors, were characterized on SIRT4 inhibition using 
currently developed assays. It was reported that SIRT4 is the most sensitive on 
nicotinamide inhibition among sirtuins, which could represent a good starting point for 
future fragment-based optimization campaigns (101,102). 

Selective SIRT5 inhibitors 

Many selective and potent inhibitors of SIRT5 reported so far are in the class of a 
mechanism-based peptidomimetic inhibitors. One of the most promising inhibitors 
reported to date is thiourea-based 46 (Figure 12) (103). However, a recent study, using 
systematic shortening of available SIRT5 peptidomimetic inhibitors, suggested (S)-3-(2-
naphthylthio)succinylamide scaffold (47, Figure 12) as a useful starting point for the 
systematic development of small molecules that potently and selectively target SIRT5 
structure (104). 
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Figure 12.  Chemical structures of selective SIRT3-7 inhibitors 

Slika 12.  Hemijske strukture selektivnih SIRT3-7 inhibitora 
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Selective SIRT6 inhibitors 

Significant achievements have been made in SIRT6 inhibitors discovery over the 
past few years. Utilizing the crystal structure of SIRT6 in complex with adenosine 
diphosphate ribose as a starting point for in silico structure-based screening, Parenti et al. 
reported the first selective inhibitors of SIRT6, among which salicylate-based compounds 
was singled out as the most promising for future optimization (105). Further optimization 
of obtained salicylate-based compound resulted in compound 48 with improved potency 
and selectivity exhibited to sensitize pancreatic cancer cells to gemcitabine (Figure 12) 
(106). 

Trichostatin A, 49 an inhibitor of HDACs from class I and II, was discovered to 
inhibit SIRT6, but not other SIRT isoforms. Although 49 inhibits HDACs through a zinc 
binding mechanism, the inhibition of SIRT6 was unrelated to the coordination of the zinc 
which was validated by crystallographic studies. This is the first hydroxamic acid among 
sirtuin inhibitors reported so far (107).  

Among natural products, quercetin derivatives catechin gallate (50a) and 
gallocatechin gallate (50b) were reported to be potent inhibitors of SIRT6. According to 
the recently reported crystal structure, catechin gallate occupies the same allosteric 
binding site on SIRT6 as SIRT6 activators (108,109). Potent mechanism-based 
peptidomimetic inhibitors of SIRT6 were also described. Unfortunately, these inhibitors 
demonstrated a lack of selectivity (110).  

Selective SIRT7 inhibitors 

The first potent mechanism-based cyclic peptide SIRT7 inhibitors were reported 
just recently (51, Figure 12). However, they lack selectivity (111). At the same time, 
through in vitro enzymatic screening, a potent small molecule inhibitor of SIRT7 was 
reported (52, Figure 12). Despite reporting inhibition of cancer growth in vivo on a mice 
model of uterine sarcoma, the authors of the study didn’t report selectivity of the inhibitor 
across sirtuin family (112). The crystal structure of SIRT7 has not yet been discovered, 
except N-terminal fragment. 

HDAC inhibitors on the market 

Until the end of 2020, there had been four pan-HDAC inhibitors (demonstrating 
nonselective HDAC profile) approved by FDA and one approved HDAC inhibitor 
developed in China. Regarding their chemical nature (Figure 13), the approved HDACi 
can be classified as: a) Hydroxamic acid derivatives: Vorinostat (ZolinzaTM), Belinostat 
(BeleodaqTM) and Panobinostat (FarydakTM), b) Disulfide based HDAC inhibitor: 
Romidepsin (IstodaxTM) and c) Benzamide HDACi: Chidamide (EpidazaTM). 

The clinically used HDAC inhibitors are licensed for hematological cancers, 
specifically in the therapy of T-cell lymphoma and multiple myeloma (113). 
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Figure 13. Chemical structures of approved HDAC inhibitors 

Slika 13.  Hemijske structure registrovanih HDAC inhibitora 

 

Conclusions 

It is of paramount importance to continue the research of histone deacetylase 
inhibitors in the medicinal chemistry. So far, the global oncology market has been 
introduced with five HDAC inhibitors, and none of the SIRT inhibitors. Though the great 
improvements in our understanding of the chemical biology of HDAC and SIRT 
inhibitors, the puzzle should be completed with several objectives: 

a) The in vitro assays for HDAC and SIRT inhibitory profiles should be revalidated 
to assess other catalytic activities rather than deacetylation, 

b) Nanomolar selective SIRT inhibitors are highly welcome to further probe NAD+-
dependent control of acetylome and 

c) Design and synthesis of novel HDAC and SIRT inhibitors should be conducted 
with data on HDAC-protein and SIRT-protein crosstalk in cellular signaling. 
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Kratak sadržaj 

Savremena hemoterapija kancera se bazira na velikom broju različitih naučnih pristupa. 
Dugo se smatralo da bi genetsku nestabilnost u kancerskim oboljenjima trebalo lečiti agensima 
koji direktno oštećuju DNK. Razumevanje molekularnih osnova malignih oboljenja rasvetlilo je 
značaj fenotipske plastičnosti. U eri epigenetike, učinjeni su mnogi napori da se izmeni aberantna 
homeostaza u kancerskom oboljenju bez modifikovanja sekvence DNK. Jedna od takvih strategija 
je modulacija lizinskog acetiloma u humanim kancerima. Da bi se acetil grupa uklonila sa histona, 
ćelije koriste enzime histon deacetilaze. Poremećena ravnoteža acetilacije i deacetilacije na 
lizinskim ostacima histona može biti regulisana inhibitorima histon deacetilaza. 

Kroz ovaj pregledni rad, biće prikazani mehanizmi inhibicije izoformi histon deacetilaza, 
različiti inhibitori histon deacetilaza, kao i njihove terapijske primene i očekivanja u modernom 
razvoju lekova. 

 
Ključne reči: histon deacetilaze, sirtuini, inhibitori, epigenetika, acetilom 
 

 
 
 
 
 
 


