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Abstract 

Traditional drug discovery strategies are usually focused on occupancy of binding sites that 
directly affect functions of proteins. Hence, proteins that lack such binding sites are generally 
considered pharmacologically intractable. Modulators of protein activity, especially inhibitors, 
must be applied in appropriate dosage regimens that often lead to high systemic drug exposures 
in order to maintain sufficient protein inhibition in vivo. Consequently, there is a risk of 
undesirable off-target drug binding and side effects. Recently, PROteolysis TArgeting Chimera 
(PROTAC) technology has emerged as a new pharmacological modality that exploits PROTAC 
molecules for induced protein degradation. PROTAC molecule is a heterobifunctional structure 
consisting of a ligand that binds a protein of interest (POI), a ligand for recruiting an E3 ubiquitin 
ligase (an enzyme involved in the POI ubiquitination) and a linker that connects these two. After 
POI-PROTAC-E3 ubiquitin ligase ternary complex formation, the POI undergoes ubiquitination 
(an enzymatic post-translational modification in which ubiquitin is attached to the POI) and 
degradation. By merging the principles of photopharmacology and PROTAC technology, 
photocontrollable PROTACs for spatiotemporal control of induced protein degradation have 
recently emerged. The main advantage of photocontrollable over conventional PROTACs is the 
possible prevention of off-target toxicity thanks to local photoactivation. 
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Induced protein degradation: a new approach for drug development 

Although the genomic revolution allowed for finding new relations between certain 
proteins and diseases (1-4), standard strategies for small-molecule drug development are 
not always sufficient to exploit those findings. The major issue is the fact that many new 
biological targets do not have appropriate binding sites which can accommodate small 
molecules resulting in modulation of the target functions (5). Additionally, intracellular 
localization of some of those biological targets usually makes them pharmacologically 
intractable. Hence, the pharmacological effect on intracellular proteins is challenging, and 
this view can be supported by the fact that there are few approved drugs which target 
scaffolding proteins, transcription factors and other non-enzymatic proteins localized 
within cells (6,7). Besides this, strategies for small-molecule drug development based on 
the occupation of proteins' binding sites may demand high systemic drug exposures to 
achieve sufficient biological targets occupancy in vivo (8). This increases the risk for 
pharmacological effects of drugs beyond their primary biological targets and, 
consequently, the occurrence of adverse effects. 

In comparison with standard medicinal chemistry strategies of developing small 
molecules as modulators of target biomolecule functions, which are usually based on the 
occupancy theory, small-molecule-induced protein degradation is a new approach which 
has the potential to affect a greater number of proteins. Changing pharmacological 
strategy from protein inhibition to protein degradation allows for generating 
pharmacological effects involving proteins generally considered to be pharmacologically 
intractable (9,10). Additionally, protein degradation can act concomitantly with the 
available inhibitor-based therapeutic regimens. It is also important to note that the 
inhibition of certain cellular pathways can cause upregulation of the target protein, which 
ultimately leads to the development of tolerance to applied inhibitor (11,12). Thus, 
induced protein degradation not only reduces the number of active proteins that need to 
be inhibited, but also resists their compensatory overexpression. Besides that, many 
biological targets that are pharmacologically tractable also have some scaffolding roles 
which are unattainable to traditional pharmacological approaches, but still contribute to 
resistance mechanisms (13-19). 

The onset of many diseases is often the consequence of abnormal protein 
functioning, and traditionally this issue is mostly addressed using occupancy-based 
pharmacology (Figure 1). It means that applied inhibitor occupies the disease-related 
protein and blocks its functions. Finally, the longer protein functions are blocked, the 
greater the clinical benefit achieved. Consequently, as mentioned above, high local 
inhibitory concentrations of the applied inhibitor need to be achieved and maintained in 
order to provide an appropriate therapeutic response, which together may lead to off- 
target binding and side effects (8). An alternative is event-driven pharmacology (Figure 
1) where the applied drug triggers an event that ultimately reduces cellular levels of the 
disease-related protein. Some of these approaches are antisense oligonucleotides, small 
interfering RNAs (siRNAs) and CRISPR-Cas 9 technology. Although nucleic acid- based 
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tools can be useful in research, their road to clinical trials is quite difficult. For example, 
unmodified nucleotides are unstable in serum (20), while modified nucleotides tend to 
accumulate in the kidney (21,22) and can be immunogenic (23,24). Furthermore, nucleic 
acid-based agents encapsulated by nanoparticles were captured in the liver, and this 
attempt to improve their pharmacokinetic properties was unsuccessful (25-28). 
Additionally, siRNAs can engage off-target mRNA, which unfortunately leads to 
undesired effects (29-31). It is worth mentioning that the efficacy of nucleic acid-based 
agents is dependent on the target protein half-life, hence, the impact on long-lived proteins 
is minor compared to short-lived ones (32). 

 
Figure 1.  Occupancy- and event-driven pharmacology models 

Slika 1.  Farmakološki modeli zasnovani na okupiranosti ciljnih proteina i  

 pokretanju događaja koji dovode do razgradnje ciljnih proteina 

 

More recently, Crews et al. (32) have developed a concept that combines the 
modularity of nucleic acid-based strategies with the pharmacology of small-molecule 
therapeutics. That approach, based on the concept of event-driven pharmacology, was 
named “Proteolysis targeting chimera” (PROTAC). 
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PROTAC technology and PROTAC molecules 

PROTAC technology uses bifunctional molecules where the one end binds a protein 
of interest (POI), while the other one recruits cellular quality control mechanisms which 
afterwards induce protein degradation. Transient binding is sufficient to elicit a biological 
response and, in contrast to the stoichiometric occupancy of the binding site, proteolysis 
targeting chimeras (i.e. PROTACs) can perform their pharmacological effect in catalytic 
quantities. Additionally, compared with the dissociation kinetics of an inhibitor from an 
active site, target protein degradation requires protein resynthesis and all that provides a 
kinetic advantage to molecules that induce protein degradation. Furthermore, the ligand 
does not have to occupy the binding site that affects protein function (e.g. the active site 
of an enzyme) in order to be a degrader – binding at any suitable region of a biological 
target could potentially induce its degradation (32). Therefore, it can be concluded that 
PROTACs might overcome common disadvantages of traditional inhibitors. 

PROTACs perform their pharmacological effect (i.e. protein degradation) through 
the active recruitment of ubiquitin-proteasome system, while protein conjugation with 
ubiquitin (Ub), a 76 amino acid protein, is essential for regulated protein degradation via 
26S proteasome. More precisely, PROTACs are heterobifunctional molecules composed 
of: 

a) POI ligand, 

b) E3 ubiquitin ligase ligand (i.e. E3 Recruiting Element), 

c) linker that connects those two ligands (Figure 2) (33-37). 

 
 
 

 
 

Figure 2.  Schematic representation of a PROTAC molecule 

Slika 2.  Šematski prikaz PROTAC molekula 

 

Hence, ubiquitin-proteasome system (UPS), outlined in Figure 3, is an essential 
constituent of overall PROTACs mechanism of action. 
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Figure 3.  The mechanism of protein degradation by ubiquitin-proteasome system 

Slika 3.  Mehanizam degradacije proteina ubikvitin-proteazom sistemom 

 

The crucial step in PROTACs` mechanism of action is POI ubiquitination (also 
known as ubiquitylation or ubiquitinylation). This is an enzymatic post-translational 
modification in which an isopeptide bond is formed between the carboxyl group of the 
ubiquitin`s last amino acid – Gly76 and the ε-amino group of the POI`s lysine. 
Ubiquitination cascade starts with the ubiquitin-activating enzyme (E1) (38) which 
creates a thioester bond with Ub via an ATP-dependent mechanism. Ub is then transferred 
to the ubiquitin-conjugating enzyme (E2) (39) and the last enzyme, E3 ubiquitin ligase 
(E3) (40), specifically binds to the POI and catalyzes the transfer of the activated Ub from 
E2 to the POI. The reaction can continue with repeated cycles of E2/E3 reactions, which 
results in multiple Ubs transferred onto the POI. Considering that Ub has seven lysines, 
Ubs can be linked in multiple different ways, yielding polyubiquitin chains with unique 
topographies. Finally, polyubiquitinated POI is directed to the 26S proteasome for 
degradation. 

PROTACs operate through the active recruitment of an E3 ubiquitin ligase to tag 
proteins intended for degradation (Figure 4). They bind a POI with one ligand, while the 
other one recruits the E3 ubiquitin ligase, thereby forming a ternary complex POI- 
PROTAC-E3 ubiquitin ligase. The recruited E3 ubiquitin ligase mediates ubiquitin 
transfer from E2 to the POI, the ternary complex dissociates and the ubiquitinated POI 
degrades in the 26S proteasome. Given that PROTAC is not degraded in this process, it 
can be bonded again to undegraded POIs. This enables the ubiquitination and, ultimately, 
degradation of multiple equivalents of POIs only if the interaction between PROTAC and 
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POI was not covalent. It can therefore be concluded that PROTACs act sub-
stoichiometrically and catalytically (41). Such a mode of action is in contrast with 
traditional inhibitors, where continuous binding of the drug to the target is necessary to 
achieve an appropriate biological effect. 

 
 

 

Figure 4.  The mechanism of ubiquitination and subsequent protein of interest  

 degradation by a PROTAC molecule 

Slika 4.  Mehanizam ubikvitinacije i posledične degradacije proteina od interesa  

 PROTAC molekulom 

 

Photocontrollable PROTACs 

Since the initiation of protein degradation study via PROTACs, several classes of 
these molecules have been explored. The first-generation PROTACs are peptide-based 
molecules (42). Although they proved the degradation concept, these molecules have 
some disadvantages, such as low potency, poor cellular permeability and peptide motifs 
that can be easily recognized as immunogens (43). On the other hand, second-generation 
PROTACs are non-peptidic molecules (44), which have been extensively studied and 
they perform effective degradation of POIs (45). The recent modification of these 
PROTACs is based on photopharmacology which allows optical control to promote POI 
degradation. Photopharmacology-based PROTACs can be divided into two classes: 
photo-caged PROTACs (pc-PROTACs) and photoswitchable PROTACs 
(photoPROTACs), which will be briefly discussed in the following chapters. 
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Photo-caged PROTACs (pc-PROTACs) 

The first paper about pc-PROTACs was published in 2019 by Xue et al. (46)  and 
it presented a general strategy for the development of pc-PROTACs. Those molecules are 
actually inactive PROTACs in which a ligand for POI or a ligand for E3 ubiquitin ligase 
is blocked by photocontrollable bulky groups. These protecting groups should have two 
important features: one is to prevent the binding of the PROTAC molecule to the POI or 
E3 ubiquitin ligase, and the other is its easy cleavage using light irradiation, which 
ultimately gives an active PROTAC molecule (Figure 5). 
 
 

 
Figure 5.  PROTAC releasing from pc-PROTAC after light irradiation 

Slika 5.  Oslobađanje PROTAC molekula iz pc-PROTAC molekula nakon  

 Ozračivanja svetlošću 

 

The authors exploited photo-removable 4,5-dimethoxy-2-nitrobenzyl (DMNB) 
group to dBET1 PROTAC molecule and 1 µM of thus obtained pc-PROTAC1 almost 
completely degraded Bromodomain-containing protein 4 (BRD4) as POI in Ramos cells 
(Human Burkitt's lymphoma B cells) after irradiation with maximum degradatio efficacy 
(Dmax) of 93 % (Figure 6). Furthermore, the in vivo activity of synthesized pc- PROTAC1 
was confirmed on a zebrafish model. Additionally, the same group made pc- PROTAC3 
and various concentrations of it were used to treat Ramos cells. Only after light irradiation 
at 365 nm for 3.5 minutes were the levels of Bruton's tyrosine kinase (BTK) as POI 
significantly reduced in a dose-dependent manner after 18 hours (Figure 6). In conclusion, 
BRD4 and BTK levels were reduced in a dose-dependent manner and the light-induced 
degradation of both proteins was influenced by irradiation time. 
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Figure 6.  DMNB group cleavage reactions 

Slika 6.  Reakcije uklanjanja DMNB grupe 

 

Naro et al. (47) coupled other photocontrollable protecting groups –                            
7- (diethylamino)coumarin (DEACM) and 6-nitropiperonyloxymethyl (NPOM) with von 
Hippel-Lindau (VHL) ligand and cereblon (CRBN) ligand, respectively, to obtain pc- 
PROTACs (Figure 7) which were inactive under dark, but induced degradation of  
Estrogen-related receptor alpha (ERRα) and BRD4 upon light irradiation. The DEACM 
group was cleaved from VHL ligand at 365 nm and 402 nm, while the NPOM group was 
cleaved from CRBN ligand at 365 nm. 
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Figure 7.  Chemical structures of DEACM- and NPOM-containing pc-PROTACs 

Slika 7.  Hemijske strukture pc-PROTAC molekula koji sadrže DEACM i NPOM 
 

Photoswitchable PROTACs (PhotoPROTACs) 

Light-induced pc-PROTACs activation is an irreversible process, and because of 
that the optical control of protein degradation using pc-PROTACs is not a reusable 
process. Therefore, pc-PROTACs may exhibit a cytotoxic effect caused by continuous 
degradation of a POI (48). New strategies are being created in order to allow reversible 
protein degradation, and researchers have recently developed reversible and optical 
controlled PROTACs using some photoswitchable functional groups. 

Pfaff et al. (49) merged the strategies of photopharmacology and small-molecule 
PROTACs and thus developed the concept of photoswitchable, bistable photoPROTACs 
which have two configurationally stable Z- and E-azo isomers. The activity of those 
molecules is controlled using light which induces configurational (Z-/E-photoPROTAC) 
changes (Figure 8). This is a novel concept for continual spatiotemporal control of 
induced protein degradation that could prevent off-target toxicity, which is an issue 
generally seen in pharmacotherapy. 
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Figure 8.  Photoinduced switching between Z- and E-photoPROTAC isomer 

Slika 8.  Fotoindukovani prelaz između Z- i E-photoPROTAC izomera 

 

The lead structure for the generation of the photoPROTAC was ARV-771 (50), a 
highly active Bromodomain and extra-terminal domain (BET) protein degrader. Bistable 
ortho-tetrafluoroazobenzene (o-F4-azobenzene) was included as the linker between the 
ligand for BET protein and the VHL ligand, which gave the photoPROTAC (Figure 9). 
The molecule thus obtained was stable in both Z- and E-forms, which can interconvert 
under photochemical conditions. It means that an active E-isomer can be obtained under 
a one-time exposure to irradiation at 415 nm, which consequently enabled stable ternary 
complex formation, protein ubiquitination and its proteasomal degradation. Due to the 
bistable property of o-F4-azobenzene moiety, continuous irradiation is not necessary for 
achieving protein degradation. Conversely, the structure of photoPROTAC was adjusted 
to an inactive configuration after exposure to irradiation at 530 nm (Figure 9). 
 

 
Figure 9.  The chemical structure of ARV-771 as the lead structure for the generation  

 of the photoPROTAC and its photoinduced switching 

Slika 9.  Hemijska struktura ARV-771 kao vodećeg jedinjenja za stvaranje  

 photoPROTAC molekula i njegov fotoindukovani prelaz 
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The critical difference in linker length between active and inactive PROTACs in 
many examples is about 3 Å and E-/Z-switch in azobenzenes corresponds to a difference 
of 3-4 Å in topological distance (49). Therefore, the introduction of a photoswitchable 
linker enabled reversible control over the topological distance between both ligands. It 
was seen that the Z-isomer was inactive, because the distance defined by that linker state 
is too short for ternary complex formation between corresponding proteins. On the other 
hand, the E-isomer was active, since its length is sufficient for engaging both protein 
partners, formation of productive ternary complex and BRD2 degradation. A significant 
degradation of BRD4 was not seen after Z- or E- photoPROTAC treatments, although the 
parent molecule, ARV-771, could degrade both BRD2 and BRD4 proteins, and with 
greater potency. The authors proposed hypotheses in order to explain those results. The 
first is that the photoPROTAC used in experiments has a structural feature that makes it 
different from ARV-771, and that is a reversed amide bond (Figure 9) between (+)-JQ1 
and o-F4-azobenzene moiety. In the end, this shift can be held accountable for a newly 
gained selectivity of the E-photoPROTAC toward BRD2 over BRD4. The second is that 
the azobenzene motif increases overall stiffness (51) and that could be the reason for a 
potential loss of some interactions with BRD4. Also, both reversed amide bond and 
azobenzene moiety could give an unstable ternary complex and, consequently, inefficient 
ubiquitination and proteasomal degradation of BRD4. 

It is important to note that due to the bistable nature of the o-F4-azobenzene motif, 
the photostationary state of the photoPROTAC is persistent and thus there is no need for 
continuous irradiation. After all the above, it can be concluded that photoPROTACs 
enable reversible on/off switching of protein degradation that is compatible with the 
environment in cells. Additionally, by enabling spatiotemporal control of induced protein 
degradation, photoPROTACs have an advantage over photocaging strategies in which 
active molecules are irreversibly released. 

Conclusion 

The PROTAC technology has great potential as a new modality using the event- 
driven mode of action. There is a lot of evidence that PROTACs using this alternative 
mode of action exhibit some advantages over traditional, occupancy-driven 
pharmacology models. The most notable progress using PROTACs has been noticed after 
the observation that those molecules perform improved binding and degradation 
selectivity towards homologous protein families and can also overcome inhibition- 
induced tolerance mechanisms. Besides that, PROTACs have the potential for treating 
biological targets which are intractable using traditional inhibitors (52). Furthermore, 
PROTACs do not have to occupy a specific binding site that directly affects protein 
function in order to be degraders – binding to any position on a target protein could 
potentially induce degradation. This advantage could be harnessed by using ligands that 
simply bind to a biological target and do not necessarily perform inhibition or any other 
effect (32). It is possible to have a PROTAC where its affinities towards POI or E3 
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ubiquitin ligase might be in a micromolar range, but the ultimate effect in cells can be seen 
in a picomolar range (53). Third generation PROTACs, arising from photopharmacology 
and small-molecule degraders, offer new types of precision therapeutics that might 
prevent off-target toxicity (48,49). Furthermore, in combination with proteomics 
techniques, photocontrollable PROTACs offer opportunities for studying downstream 
effects of signaling pathways (54). Taken together, photocontrollable PROTACs enable 
the light-irradiation-driven induction of protein degradation using photosensitive groups. 
This strategy is favorable since it can prevent off-target toxicity due to its spatiotemporal 
controllability. 
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Kratak sadržaj 

Tradicionalne strategije razvoja lekova su obično osvrnute na okupiranje vezujućih mesta 
koja direktno utiču na funkcije proteina. Stoga se proteini koji nemaju takva vezujuća mesta 
generalno smatraju farmakološki nedodirljivim. Modulatori aktivnosti proteina, naročito inhibitori, 
koriste se u režimima doziranja koji često dovode do preterane sistemske izloženosti leku, a sve u 
cilju održavanja dovoljne inhibicije proteina in vivo. Posledično, postoji rizik od neželjenog 
vezivanja leka van svog primarnog mesta dejstva i neželjenih efekata. Nedavno je predstavljena 
tehnologija dirigovane proteolize (PROteolysis TArgeting Chimera, PROTAC) kao novi 
farmakološki modalitet koji koristi PROTAC molekule za indukovanu degradaciju proteina. 
PROTAC molekuli su heterobifunkcionalne strukture sačinjene od liganda koji se vezuje za protein 
od interesa (POI), liganda za regrutovanje E3 ubikvitin ligaze (enzima uključenog u ubikvitinaciju 
POI) i linkera koji ih povezuje. Nakon formiranja ternarnog kompleksa POI-PROTAC-E3 ubikvitin 
ligaza, POI podleže ubikvitinaciji (enzimskoj post-translacionoj modifikaciji u kojoj se ubikvitin 
vezuje za POI) i degradaciji. Integrisanjem principa fotofarmakologije i PROTAC tehnologije, 
nedavno su nastali su fotokontrolisani PROTAC molekuli za prostorno-vremensku kontrolu 
indukovane degradacije proteina. Zahvaljujući lokalnoj fotoaktivaciji, glavna prednost 
fotokontrolisanih nad konvencionalnim PROTAC molekulima je moguća prevencija toksičnosti 
koja nastaje usled dejstva van primarnog biološkog targeta. 

 
Ključne reči: indukovana degradacija proteina, PROTAC tehnologija,  
  fotokontrolisani PROTAC molekuli 
 


