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Abstract 

Design of Experiments (DoE) is an indispensable tool in contemporary drug analysis as it 
simultaneously balances a number of chromatographic parameters to ensure optimal separation 
in High Pressure Liquid Chromatography (HPLC). This manuscript briefly outlines the theoretical 
background of the DoE and provides step-by-step instruction for its implementation in HPLC 
pharmaceutical practice. It particularly discusses the classification of various design types and 
their possibilities to rationalize the different stages of HPLC method development workflow, such 
as the selection of the most influential factors, factors optimization and assessment of the method 
robustness. Additionally, the application of the DoE-based Analytical Quality by Design (AQbD) 
concept in the LC method development has been summarized. Recent achievements in the use of 
DoE in the development of stability-indicating LC and hyphenated LC-MS methods have also 
been briefly reported. Performing of Quantitative structure retention relationship (QSRR) study 
enhanced with DoE-based data collection was recomended as a future perspective in description 
of retention in HPLC system. 

 
Keywords: design of experiments, drug analysis, high pressure liquid chromatography, 

     analytical method development and validation 
 

doi.org/10.5937/arhfarm71‐32480 



280 

 

 

Introduction 

The main goal of pharmaceutical analysis is to ensure the quality of active 
pharmaceutical ingredients (APIs), excipients and/or drug products (DP) (1). Thus, drug 
analysis comprises many tasks, such as the assessment of pharmaceutical substance 
purity, identification and quantitation of APIs in dosage forms, testing the stability of 
APIs and DP, bioanalysis, etc. (2) As strict requirements for the quality of 
pharmaceuticals are prescribed, the method of analysis must provide reliable results. This 
is achieved through effective method development. Method validation is a procedure that 
shows the suitability of the developed analytical method for the intended purpose. It 
includes the estimation of method robustness, selectivity, accuracy and other validation 
parameters (3). Nowadays, a robust and reliable pharmaceutical method can be obtained 
by embedding the quality into method development stage. This concept is known as 
Analytical Quality by Design (AQbD) and its basic principles, as well as the benefits, are 
described in more detail in (4). 

High pressure liquid chromatography (HPLC) is one of the irreplaceable techniques 
in modern pharmaceutical analysis. However, despite its widespread use in various fields 
of pharmaceutical research, optimization of reliable HPLC methods remains a rather 
challenging task. This claim finds its support in the observation that successful separation 
depends on the simultaneous control of numerous factors that affect the retention of 
analytes (5). For decades, this problem has been addressed by trial-and-error approach. 
However, this methodology is time-consuming, labor intensive and involves excessive 
consumption of reagents and toxic organic solvents. Most importantly, the optimal set of 
working conditions can never really be ensured (6, 7). In order to rationalize the 
examination of the experimental space during the HPLC condition optimization, 
chemometric approaches are increasingly being applied (8).  

Chemometrics is a contemporary chemical sub-discipline that uses mathematics, 
statistics and formal logic to design the optimal experimental procedure. It provides 
global knowledge of the system under a study with a minimum number of carefully 
chosen experiments. Experimental design (also referred to as Design of Experiments; 
DoE) is the most popular chemometric discipline in the optimization and validation of 
chromatographic methods as well as in defining design spaces, an essential component of 
the AQbD paradigm (9, 10). To provide a state-of-the-art understanding of such a broad 
topic and thus encourage further use of chemometric techniques in drug analysis, this 
manuscript aims to provide a comprehensive overview of DoE applications in HPLC 
pharmaceutical research. 

Design of experiments –theoretical background 

DoE is a multivariate statistical technique intended for effective planning, 
performing and analyzing data from conducted experiments (11). In DoE studies, one or 
several input variables (factors) are deliberately changed to reveal their impact on the 
observed response (experimental outcome of interest). Compared to the traditional 
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approach that includes tuning one variable at a time (while keeping other parameters 
unchanged), the DoE methodology has a number of advantages. DoE methodology 
assesses the interaction between factors, provides global knowledge, delivers high-quality 
information at every point of the experimental domain and requires fewer experiments 
than classical approach. Leardi stated that the traditional, One-Factor-At-a-Time (OFAT) 
methodology should not be used in the future and gave illustrative examples from 
everyday life about its outdated nature (12). 

In summary, the application of DoE in HPLC analysis is fueled by the ability to 
obtain objective and information-rich results with minimal experimental work. DoE can 
be used to facilitate chromatographic method development, method optimization and 
robustness testing.  

Step-by-step protocol to ensure a successful application of DoE in HPLC 

1) Define the aim of the experiment 

According to the classical way of thinking, once you have obtained the results you 
can draw any information of interest. This approach also includes the belief that the 
number of experiments should be as large as possible in order to obtain reliable 
information. On the contrary, in DoE-supported studies the goal (examination of 
chromatographic behaviour of analyte, separation of closely eluted analytes) should be 
set before experiments are conducted. This rationalizes HPLC research and improves its 
quality (12).  

2) Conduct preliminary studies 

Preliminary experiments should be in line with the conventional protocol for the 
HPLC method development and validation. Hence, the aim of this step is to select the 
initial HPLC conditions, such as column type and mobile phase composition. 
Nevertheless, there is a growing number of studies (13, 14) in which the issue related to 
the selection of mobile phase is addressed using the DoE. 

3) Select the experimental factors and their levels 

The quality of DoE-supported HPLC research depends on the proper identification 
of all the important variables. If an important variable is not detected as a factor (input), 
irregular behavior of the analytical system can be observed. On the other hand, if an 
insignificant variable is identified as a factor, sequential stages of research may become 
unnecessarily complicated (10). A comprehensive overview of the factors that can affect 
HPLC separation is given in Figure 1. If the analytical process includes the derivatization 
or extraction, the factors associated with these steps should be investigated separately (7). 
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Figure 1.  Factors affecting HPLC separation – adapted according to reference (9) 

Slika 1.  Faktori bitni za razdvajanje u HPLC sistemu – prilagođeno prema referenci (9) 

 

Within the DoE framework, HPLC experiments are performed at different levels of 
investigated variables. Factor level corresponds to its magnitude for numeric variables. 
Lower and higher levels of variables are coded as -1 and +1, respectively. Nominal level 
of a factor is coded as 0. Using the same scale for different factors makes it possible to 
compare their effects. Apart from this, coded values allow the representation of 
qualitative variables within DoE (12).  

The number of factors and selection of corresponding levels depend on intended 
use of a particular design. In general, when DoE is used in method development or 
robustness testing, a large number of factors should be examined at two levels. In method 
optimization stage, however, only the most significant factors are investigated at least at 
three levels. The general procedure is subject to change, depending on the available time, 
relevant resources and the analyst's experience. Usually, the factor levels are placed 
symmetrically around the nominal level. The interval between them can be defined based 
on experience or precision, i.e., the uncertainty with which the value of a factor can be 
adjusted (15). According to Hibbert (11), the proper choice of factor level is more pivotal 
than the choice of design type.  
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4) Select the response  

Response is the observed or measured quality or quantity value which we use to 
estimate factor's significance or which we want to optimize. It is very common to define 
multiple responses that need to be monitored during the experimentation. 

In the screening phase of method development, responses such as retention factors 
and selectivity are most often measured. In the optimization phase, retention and 
resolution factors, desirability function and chromatographic response function can be 
monitored. In robustness testing, quantitative responses (content of APIs or by-products, 
peak height, peak area) or responses describing quality of separation (resolution factor, 
relative retention time, retention factor, number of theoretical plates, plate height, tailing 
factor, peak to valley ratio) can be chosen (7, 10, 16). 

5) Plan the experiments 

In this step, a convenient experimental design has to be chosen. As stated in (17), it 
is recommended that the utilized design has good statistical features, such as 
orthogonality and/or rotability. In orthogonal designs, factors are altered independently 
of each other (11). If there is no correlation between prediction variance and distance of 
the estimates from the design center, design is rotatable (18). 

Based on the ultimate goal of HPLC experiments, the designs fall into two 
distinguished categories: screening designs and response surface designs. Screening 
designs are used to test the factors’ impact on the response of interest. Since there are 
numerous factors that can potentially impact the HPLC retention, screening designs detect 
factors (and their interactions) with the biggest effects. Factors that do not have a 
significant impact are discarded, and only the remaining factors are thoroughly examined 
using a response surface design. Response surface designs are also known as optimization 
designs, as they are used to establish experimental condition at which the most desirable 
response and/or criteria (maximum, minimum or range) is obtained (7).  

6) Perform the experiments 

Experimental work is considered as less important in the DoE methodology, but 
necessary to conduct and generate results. To obtain reliable results, the experiments must 
be performed in a random order to minimize the effects of uncontrollable variables (12). 
It is also advisable to perform experiments in replicates, (replications for several times 
under the same experimental conditions) which are used to estimate the experimental 
error (4-6, 11). 

7) Analyze the data obtained by the analytical procedure 

In this step, experimental data should be converted into information required to 
draw valid conclusions about the HPLC system.  

Statistical data analysis comprises regression analysis and analysis of variance 
(ANOVA). Regression analysis is used to assess the relationship between factors and 
response (8). Considering that many variables need to be fitted into the mathematical 
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model, the most commonly applied regression technique is the multiple-linear regression 
(MLR). In ANOVA, the significance of one or more factors is assessed by the F-test (for 
detailed instruction, see (19)). ANOVA is a useful tool in the validation of the derived 
model. 

Graphical data analysis is a complementary tool for detecting significant factors 
and revealing the relationship between variables. In this regard, mechanistic interpretation 
of HPLC data is performed via 3D and 2D plots such as (half-)normal probability plots, 
Pareto charts, contour plots, response surface plots, perturbation plots and residual plots. 
Discrimination between significant and insignificant HPLC factors is readily performed 
by the first three listed chart types (20). Contour plots and response surface plots are 
graphical representations of the mathematical model that best fit the data. These graphs 
show how the response changes depending on the factors values and are used to find the 
optimal conditions for a HPLC separation (21-23). However, it is often the case that more 
than two factors are statistically significant. Thus, the decision on which two factors 
should be included into contour plot or response surface can be based on the perturbation 
plot (20,22). Residual plots may suggest the presence of outliers, i.e. the introduction of 
a systematic error (21). 

Many steps in the DoE methodology can be easily done by an experienced analyst 
who is familiar with the basic principles of DoE. Nevertheless, it is easier to analyze the 
data using specialized computer programs or general statistical software. Popular 
software for the interpretation of chromatographic data are Design Expert (Stat-Ease 
Inc.), MINITAB (Minitab Inc.), MATLAB (The Mathworks Inc.), Statgraphics Centurion 
(Statpoint Technologies) and JMP (SAS Institute Inc.). Despite being promising free 
alternatives to the commercial programs, Chemoface and Develve have not been used in 
the field of HPLC research so far.  

Mathematical modeling in DoE 

Once the responses have been measured under varying conditions, multivariate data 
are fitted into linear or quadratic model in dependence on the predefined goal. 
Mathematical models, as stated before, are derived to explain the relationship between 
experimental factors and observed responses. They are usually described by the 
polynomial order (first-order model or linear model; second order-model or quadratic 
model). Linear and quadratic models for three factors (𝑥ଵ, 𝑥ଶand 𝑥ଷ) can be written using 
equations 1 and 2, respectively: 

 
yൌb0൅b1x1൅b2x2൅b3x3൅b12x1x2൅b23x2x3൅b13x1x3൅b123x1x2x3൅ε                                                       (1) 

yൌ b0൅b1x1൅b2x2൅b3x3൅ b11x1
2൅ b22x2

2൅b33x3
2൅b12x1x2൅ b23x2x3൅b13x1x3൅b123x1x2x3൅ε          (2) 

In the given equations, 𝑦 is a measured response, 𝑏଴ is intercept, b1,b2 and b3 are 
linear terms (first-order parameters), b12, b23 and b13 are interaction parameters, b11, b22 

and b33 are quadratic terms (second-order parameters) and 𝜀 is a residual. Coefficients in 
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a model are calculated from the model matrix as explained in reference (24). The absolute 
value of a coefficient gives an insight into the magnitude of the factor’s effect. A negative 
or positive coefficient indicates whether the response is decreased or increased by 
increase in factor's value. Residuals represent the differences between the observed and 
the predicted values of a given response. Ideally, all residuals are 0 and the model predicts 
perfectly in the investigated experimental domain. 

If factors are investigated at two levels (screening designs), only a linear model can 
be fitted to data, no curvature is obtained, and hence neither the minimum nor the 
maximum can be found in 3D-graphs. The linear relationship is not suitable for choosing 
optimal experimental conditions, but it is very useful for assessing the significance of 
factor effects. If factors are investigated at three levels, the quadratic relationship can be 
fitted to data and significant curvature can be obtained. Significant curvature, arising from 
quadratic terms, allows the analyst to understand the behavior of the system and choose 
the optimal experimental conditions by finding the response minimum or maximum. 
Multicriteria decision making should be performed to find optimal conditions if there are 
more responses of interest, given that one model is used for just one response (25). 

Classification of experimental designs applied in HPLC method 
 development 

DoE methodology encompasses a plethora of various experimental designs. To 
better understand their applicability in HPLC method development pipeline, these designs 
are classified as screening designs, optimization designs and mixture designs. The 
classification scheme is given in Figure 2. It is important to emphasize that this 
classification is not strict so that designs that are primarily intended for screening can be 
used for optimization and vice versa. It is left to the analyst to decide which design is 
appropriate in a particular case, taking into account the characteristics of experimental 
designs, the available resources and the aim of the experiments. 

Screening designs 

Two-level factorial designs are invaluable screening tools in HPLC pharmaceutical 
studies. Factorial-based design can be further classified as: Full Factorial Design (FFD), 
Fractional Factorial Design (FrFD) and Plackett-Burman Design (PBD).  
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Figure 2.  Classification of experimental designs – adapted from reference (9) 

Slika 2.  Klasifikacija eksperimentalnih dizajna – prilagođeno prema referenci (9) 
 

Full Factorial Design 

In FFD, it is mandatory to perform 𝑛௞ experiments, where n is the number of factor 
levels and k is the number of factors to be examined. FFD is composed of experiments at 
each combination of factor levels, which provides sufficient degrees of freedom to 
calculate all linear and interaction terms in a mathematical model. Experimental matrix 
and model matrix for 23 FFD are shown in Table I and II, respectively. Figures 3a and 3b 
show a graphical representation of the FFD with two and three variables, respectively 
(26).  

 

Table I  Experimental matrix for 23 full factorial design (A, B and C stand for factors) 

Tabela I  Matrica eksperimenata za 23 puni faktorski dizajn (A, B i C označavaju faktore) 
 

Experiment number A B C 
1 -1 -1 -1 
2 1 -1 -1 
3 -1 1 -1 
4 1 1 -1 
5 -1 -1 1 
6 1 -1 1 
7 -1 1 1 
8 1 1 1 
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Table II  Model matrix for 23 full factorial design 

Tabela II  Model matrica za 23 puni faktorski dizajn 

 

b0 b1 b2 b3 b12 b13 b23 b123

1 -1 -1 -1 1 1 1 -1
1 1 -1 -1 -1 -1 1 1
1 -1 1 -1 -1 1 -1 1
1 1 1 -1 1 -1 -1 -1
1 -1 -1 1 1 -1 -1 1
1 1 -1 1 -1 1 -1 -1
1 -1 1 1 -1 -1 1 -1
1 1 1 1 1 1 1 1

 

 

 
Figure 3.  Two-level FFDwith 2 (a) and 3 factors (b) 

Slika 3.  FFD na 2 nivoa za ispitivanje 2 (a) i 3 (b) faktora 

 

Two-level full factorial design is typically applied to screen factors that might 
significantly affect the HPLC system. However, the utilization of FFD is accompanied 
by a considerable number of experiments (e.g. examination of six factors would demand 
64 runs to be performed). To save on costly experiments, FFD matrix is frequently applied 
in the examination of a limited pool of independent variables (27). In cases where multiple 
factors (more than 4) need to be assessed, it is possible to safely condensate (reduce) the 
set of experiments and keep most of the information. In this regard, FrFD and PBD are 
the most commonly used reduced factorial designs in HPLC. 

Fractional factorial design 

The number of experiments in FrFD is defined by 𝑛௞ି௣, where n is the number of 
levels (usually 2), k is the number of factors and p is the size of the fraction. In FrFD the 
number of experiments should always exceed the number of factors. The FrFD cannot 
provide a sufficient degree of freedom to calculate all interaction terms. Instead, the 
effects of interaction are confounded (aliased) with the main effects. This is considered 
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acceptable during the screening phase aimed primarily at determining main effects (10). 
Experimental matrix and graphical representation of 23-1 FrFD are shown in Table III and 
Figure 4, respectively. 

 

Table III  Experimental matrix for 23-1 fractional factorial design 

Tabela III  Matrica eksperimenata za 23-1 frakcioni faktorski dizajn 

 

Run A B C (AˣB or - AˣB) 

1 -1 -1 1 or -1 
2 1 -1 -1 or 1 
3 -1 1 -1 or 1 
4 1 1 1 or -1 

 

 

 

Figure 4.  Two-level FrFD with 3 factors – two possible subsets of FFD 

Slika 4.  FrFD na 2 nivoa za ispitivanje 3 faktora – dva moguća podseta FFD 

 

If the influence of the interactions of high order is negligible, FrFD makes a great 
tool for screening a large set of factors. Recently, reported studies used FrFD as screening 
tool in robust method development. The number of examined factors was typically 
between 4 and 7. The common degree of fractionation was between 1 and 3 (28-32). 

Plackett-Burman design 

PBD is a two-level reduced factorial design with favorable features, such as balance 
and orthogonality. In PBD, the total number of experiments (N) is always multiple of 4 
runs (4, 8, 12, 16, 20 and 24), and with N experiments N-1 factors are examined. Thus, 
the appealing advantage of PBD is the ability to assess a large number of factors with a 
small number of runs (e.g. the examination of 11 factors requires only 12 experiments). 
Experimental matrix of PBD with 11 factors is displayed in Table IV. It can be built 
starting from the first row, usualy designated as generator (33). 
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Table IV  Experimental matrix for Plackett-Burman design for 11 factors 

Tabela IV  Matrica eksperimenata za Plaket-Burmanov dizajn za 11 faktora 

 

Run x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 

1 + + - + + + - - - + - 
2 - + + - + + + - - - + 
3 + - + + - + + + - - - 
4 - + - + + - + + + - - 
5 - - + - + + - + + + - 
6 - - - + - + + - + + + 
7 + - - - + - + + - + + 
8 + + - - - + - + + - + 
9 + + + - - - + - + + - 
10 - + + + - - - + - + + 
11 + - + + + - - - + - + 
12 - - - - - - - - - - - 

 

Given that PBD requires a specific number of factors (N-1), there are often not 
enough potentially significant variables to fill the experimental matrix. For this purpose, 
dummy factors are introduced. Dummy factors are imaginary factors, with no real 
chemical meaning, that cannot possibly affect the observed system. A change in response 
that is the consequence of dummy factor alternation (is it rainy outside or not, did you put 
your watch on your right or left hand) indicates that some important factor is not included 
into the examination or the existance of significant interactions between factors. The PBD 
cannot be used to estimate anything else but main factors. This is a sufficient level of 
information for screening design. On the other hand, the two-factor and higher-level 
factor interactions are confounded with main factors and could result in the significance 
of dummy factors. Therefore, dummy factors can be used in the estimation of experimental 
error on one side and in demasking the statistically significant interactions on the other. 
When using dummy factors in standard error estimation, at least three dummy factors 
should be included in the experimental plan (16). 

Since PBD is only able to assess the main effects, it is favorably used in robustness 
testing, where the effects of the interaction are negligible due to the extremely narrow 
factor ranges. Commonly, 6-8 factors are assessed using PBD (34-38). In latest 
publications, PBD has been employed in the robustness testing of AQbD-supported LC 
methods (39) or as a screening tool (40-42). 

Optimization designs 

Response surface designs include: a) symmetrical designs and b) asymmetrical 
designs. The former category of designs explores a symmetrical experimental domain and 
contains a central point. Symmetrical designs are: Three-level FFD, Central Composite 
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design (CCD), Box-Behnken design (BBD), Taguchi design (TD), and Doehlert design. 
The latter category of designs examines factors at different numbers of levels causing the 
investigated domain to take asymmetrical shape. For instance, D-optimal design is an 
asymmetrical design. Designs that are used to study mixture variables exclusively, i.e. to 
optimize the composition of HPLC mobile phase, are denoted as Mixture designs (8).  

Three-level Full Factorial Design 

The three-level full factorial design can be used to optimize the HPLC methods 
(8,18). However, due to the great number of required experiments (3௞ሻ, such an 
application is practical if only two or three factors (𝑘 ൌ 2, 3) are of interest for the 
investigation (43). 

Central composite design 

Central composite design (CCD) is the most complex design used in the 
optimization of HPLC methods. It requires 2௞ି௣ ൅  2𝑘 ൅ 𝐶௉ experiments, where k is the 
number of factors, p is the size of the fraction and Cp is the central point of the 
experimental domain. CCD combines full or fractional factorial design (2௞ି௣), star design 
(2k axial points) and central point. Unlike screening designs, response surface designs 
have central points as their obligatory part. Replicates at central points can be added to 
estimate experimental error and perform ANOVA.  

CCD can be performed as three- or five-level design, depending on the distance of 
axial points from the center (α). If |𝛼| has a value 1, axial points are placed on the faces 
of the experimental domain. Accordingly, the three-level design is denoted as face-
centered CCD. If |𝛼| has value 2ሺ௞ି௣ሻ/ସ, axial points are placed on the circle outside the 
FFD or FrFD experimental domain. This five-level design is referred to as circumscribed 
CCD. Circumscribed CCD is a rotatable design. Due to the possibility of missing some 
important data, circumscribed CCD is considered inappropriate when: axial points are 
very distant from the central point or when such extreme values of examined factors are 
not feasible or practical (26). Figure 5 shows a graphical representation of face-centered 
CCD (left) and circumscribed CCD (right) with 3 factors.  

 

 

 

 

 

 

 

 
Figure 5.  Central composite design with 3 factors (a) face-centered (b) circumscribed 

Slika 5.  Centalni kompozicioni dizajn sa 3 faktora (a) ka centru orjentisani (b) kružni 
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CCD is particularly applied to facilitate the optimization of critical HPLC factors 
and their interactions (44-47). In most cases, 3 significant factors were optimized using 
CCD and 5 to 6 runs were performed at the central point of the experimental domain.  

Studies that used CCD to assess the robustness of HPLC methods are nicely 
summarized in (15). When CCD is used for this purpose, the conclusion about method 
robustness can be drawn using the results from the optimization stage or a new design 
can be carried out separately.  

Box-Behnken design  

Box-Behnken design (BBD) is a response surface design at three levels. The total 
number of experiments in BBD is defined by 2𝑘ሺ𝑘 െ 1ሻ ൅ 𝐶௉. Compared to CCD, BBD 
requires fewer experiments (e.g. when 3 factors are studied, the required number of 
experiments in BBD is 13, while in CCD is 15). BBD is nearly rotatable design based on 
incomplete factorial design. The BBD experimental matrix for 3 factors is shown in 
(Table V). This design does not include experiments with all factors being examined at 
their highest or lowest levels, as can be seen from Figure 6a. BBD is applied when it is 
known that the optimum lies in the central area of the experimental domain or when 
experimental points with all factors at extreme levels are not useful or feasible (11, 25).  

BBD is mainly used to optimize a HPLC system with 3 important experimental 
factors (21, 48-51). The experimental matrix is usually composed of 15-17 experiments 
due to 3-5 replications at the central point. The recently published study on the HPLC 
separation of levofloxacin and ciprofloxacinis is particularly interesting because 6 factors 
have been successfully optimized via BBD (52). 

 

Table V  Experimental matrix in Box-Behnken design for 3 factors 

Tabela V  Matrica eksperimenata za Boks-Benkenov dizajn za 3 faktora 

 

Run x1 x2 x3 

1 -1 -1 0 
2 1 -1 0 
3 -1 1 0 
4 1 1 0 
5 -1 0 -1 
6 1 0 -1 
7 -1 0 1 
8 1 0 1 
9 0 -1 -1 

10 0 1 -1 
11 0 -1 1 
12 0 1 1 
13 0 0 0 
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Figure 6.  (a) Box-Behnken design and (b) Doehlert design for 3 factors 

Slika 6.  (a) Boks-Benkenov dizajn i (b) Dolertov dizajn za ispitivanje 3 faktora  

 

Doehlert design 

Doehlert design (uniform shell design) is a non-rotatable design that allows the 
analyst to choose a different number of levels for different factors. Factors that are 
considered more important than others can be assigned a higher number of levels. Also, 
it is a beneficial property in case of practical limitations (e.g., limited resources) (25). In 
the latter situation, it is possible to simply "move" to another part of the experimental 
domain. Nevertheless, this is not a good approach if it omits important data from the 
experimental domain. Doehlert design requires 𝑛ଶ ൅ 𝑛 ൅ 𝐶௣ experiments (where, 𝑛 is the 
number of factors and 𝐶௣is the number of replicates in the central point). Thus, it is a 
more economical design than CCD or BBD. Graphical representation of Doehlert design 
for three factors is represented in Figure 6b. 

Literature survey revealed that Doehlert design was used to optimize mobile phase 
composition and mobile phase flow rate in most LC studies (53-56). 

D-optimal design 

The experimental limitations can be an obstacle to the application of symmetrical 
optimisation designs. In this case, D-optimal can be a valuable soultion since it works 
well with both symmetric and assymetric experimental regions. The particular benefits of 
this design lie in its ability to estimate quantitative and qualitative factors and to predefine 
the mathematical model. The minimum number of experiments in the D-optimal design 
is equal to the number of coefficients in the postulated model (usually quadratic model 
without interaction terms). The set of experiments to be performed is selected from the 
total number of possible combinations of factor levels. This information-rich subset is a 
combination of experiments with the maximal determinant for 𝑋்𝑋 (𝑋 is model matrix 
and 𝑋் is its transpose). When the maximal determinanat is accomplished, the precision 
of the mathematical model coefficients is assured even before the experimentation and 
statistical evaluation is performed (12). This is a prominent characteristic of D-optimal 
design. The information-rich subset of data formation (possible factor combinations) 
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would be time-consuming and hard task if all the possible subsets would be evaluated and 
compared. In order to simplify this step and, at the same time, provide precise and 
accurate model coefficients, different algorithms are used. Some of them are Fedorov and 
Mitchel (9, 12, 16). 

A more comprehensive study on D-optimal design can be found in (25). The use of 
D-optimal design in HPLC method optimization was reported in (57, 58). 

Mixture designs 

Mixture designs are used to optimize mixtures such as mobile phases in HPLC. The 
limitation of the design is reflected in fact that the sum of all components of the mixture 
must be 1 (100%) at each point of the experimental domain. Thus, the obtained 
mathematical model does not contain the intercept term, because it is not possible to 
obtain a mixture in which the content of all constituents is 0%. The terms of the 
mathematical model are in poor correlation with the factor effects and should not be used 
for their assessment. Graphical representation of a three-components mixture is an 
equilateral triangle, whose vertices refer to single components, sides to the binary 
mixtures and internal points to theternary mixtures (26). Mixture designs were used with 
great advantage in the optimization of the mobile phase composition, as specified in (59, 
60). 

Other designs 

Taguchi design is usually constructed as PBD. It comprises inner and outer arrays 
which can be used to evaluate the experimental condition that are less likely to be affected 
by environmental factors (61). Nowadays, Taguchi design is preferentially used as a 
screening tool in AQbD-based LC studies (62, 63). Sequential designs are intended for 
use in preliminary studies when the analyst isn’t familiar with the part of experimental 
domain that should be examined (7). Supersatured designs are designs that are more 
economical than FrFD or PBD because they can estimate at least NSS factors with NSS 
experiments. However, these designs are rarely used in the screening phase, given that all 
main effects are confounded (25). Nested designs are considered the most suitable designs 
for ruggedness testing (15). Split-plot designs have not yet been applied in HPLC analysis 
of pharmaceuticals (7). 

Regulatory aspects related to DoE in HPLC analysis 

Quality-by-Design (QbD) is a specific concept used in drug development with the 
ultimate goal of incorporating quality into the final product. Due to the significant role 
that analytical procedures play in the estimation of that quality, the extension of QbD 
paradigm to the development of pharmaceutical methods has been promoted through 
several regulatory documents, namely, ICH Q8 (64), Q9 (65), Q10 (66) and Q11 (67). In 
a relatively new guideline, published by the FDA in 2015 (68), it is stated that robustness 
of analytical method for drugs and biologics should be evaluated by a systematic approach 
that includes initial risk assessment and multivariate experimental approach, such as DoE. 
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However, this guideline is made as a set of recommendations and does not provide 
mandatory legal responsibilities. 

The QbD principles applied to the development of analytical methods are denoted 
as Analytical QbD (AQbD). The product of AQbD approach is a highly robust, fully 
understood method that constantly provides performance that has been predefined (69, 
70). AQbD key components include the identification of Analytical Target Profile (ATP), 
Critical Method Attributes (CMA) with risk assessment, Critical Proces Parameters 
(CPP), method optimization, definition of Design Space (DS), control strategy and 
Continuous Method Monitoring (CMM). Although several statistical tools can be 
employed to support AQbD, as explained in reference (4), DoE methodology is 
recognized as the most valuable one.  

Literature survey revealed tremendous number of HPLC methods that were 
developed using DoE-based AQbD approach in recent years (23, 62, 69, 71-73). In most 
studies, CCD and D-optimal designs were favorably used to optimize HPLC systems with 
2 critical method parameters (CMPs) and BBD in case of 3 or 4 CMPs. 

The definition of optimal separation conditions satisfying predefined criteria in 
DoE-based multiresponse HPLC method development is usually achieved by contour plot 
or response surface overlay. The shortage of such methodology lies in the fact that the 
risk of obtaining undesired results due to errors of calculating coefficients of 
mathematical models and the capability of retention prediction in every point of 
experimental region resulting from mathematical models and are not evaluated. 
Additional risk calulations by means of uniform error distribution equal to the calculated 
standard error and its addition to the estimates of model coefficients as well as the 
propagation of prediction errors to the predefined quality criterion using Monte Carlo 
simulations is considered as a more AQbD compliant strategy (69). 

Contemporary applications of DoE in HPLC 

The development of a stability-indicating LC method is a challenging process, due 
to the use of complex, multicomponent samples. These samples are formed after the 
exposure of the API(s) and/or pharmaceutical product to various stress conditions. So-
called stress samples contain several unknown degradation products apart from API(s). 
In this regard, the complexity of the method development process is attributed to the fact 
that considerable number of chromatographic parameters has to be fine-tuned in order to 
achieve optimal separation of all analytes (8, 70). Nowadays, the DoE-based AQbD 
approach is favorably used in the development of stability-indicating LC methods. For 
instance, in (74) development of stability-indicating method for cloxacillin was supported 
by PBD (screening of CMPs) and combined mixture-process variable design 
(optimization of 3 the most significant CMPs). In (69) BBD-based AQbD approach was 
used in the development of micellar HPLC method for the analysis of cilazapril and 
hydrochlorothiazide in dosage form. A detailed overview of DoE-AQbD supported 
development of stability-indicating HPLC methods can be found in (70). 
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Hyphenation of HPLC with mass spectrometry (MS) has made one of the major 
breakthroughs in pharmaceutical research. However, the separation and detection of 
compounds have become trickier due to the larger set of instrumental parameters that has 
to be optimized. To address this problem in LC-MS analysis of genotoxic impurity of 
interest, Székely et al. (75) applied the DoE. All significant factors, including mobile 
phase flow rate, gradient, injection volume (LC parameters), collision energy and cone 
voltage (MS parameters) were examined at three levels using CCD. The newest research 
articles are reporting application of Design Space accompanied with PBD and CCD for 
the development of LC-MS method for simultaneous analysis of five statins (76). 

Modified LC systems often represent a technique of choice for the separation of 
complex pharmaceutical mixtures or API(s) of highly similar retention behavior. Linear 
or quadratic polynomial models usually fail to explain the retention behavior of analytes 
in HPLC systems of greater complexity. In such case, it might be useful to apply artificial 
neural networks (ANN) as a modeling technique. ANN is great tool for modeling 
nonlinear patterns between variables. Novotná etal. (77) used DoE (CCD) in combination 
with ANN to achieve optimal ion-pair HPLC separation of neuroprotective peptides. 
More recently, Maljurić et al. (78) developed a green LC method for the separation of 
selected antipsychotics by performing ANN-QSRR (Quantitative Structure-Retention 
Relationship) study. The green LC concept was introduced by partial replacement of toxic 
solvent acetonitrile with cyclodextrin in the mobile phase. QSRR studies were used for 
prediction of retention and optimization of separation conditions. Since QSRR studies 
relay on physical-chemical properties of analytes represented by molecular descriptors, 
the molecular interactions as well as molecular mechanisms of separations in given 
separation system could also be assesed. Having in mind notable complexity of system 
cyclodextrin-modified LC and the data set comprising of analyte specific, instrumental 
and chromatographic factors, the combination of CCD-based data collection, ANN 
modeling technique and QSRR as chemometric data procesing tool successfully 
contributed to thorough understanding of analytes’ retention behavior in cyclodextrin-
modified LC system. 

Conclusion 

DoE methodology has shown overall advantage over the OFAT approach. In the 
future, regulatory requirements for method development and validation in pharmaceutical 
analysis are expected to be stricter. Thus, the use of DoE methodologies will be the only 
valid way to develop efficient and robust methods. Suitable experimental design should 
be chosen on a case-by-case basis, taking into account advantages, disadvantages and 
special features provided by a particularl design, as explained in this manuscript. 
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Kratak sadržaj 

Dizajn eksperimenata (DoE) je nezaobilazan alat u savremenoj analizi lekova budući da 
istovremeno balansira niz hromatografskih parametara kako bi se osiguralo optimalno razdvajanje 
u tečnoj hromatografiji pod visokim pritiskom (HPLC). Prikazana je teorijska osnova DoE i data 
su detaljna uputstva za njegovu primenu u HPLC ispitivanjima u farmaciji. Naročito se govori o 
klasifikaciji brojnih tipova dizajna i njihovim mogućnostima za racionalizaciju različitih faza 
tokom procesa razvoja HPLC metode, kao što su izbor najuticajnijih faktora, optimizacija faktora 
i procena robusnosti metode. Dodatno, sumirana je primena DoE kao sastavnog dela koncepta 
ugradnje kvaliteta u proizvod u domenu razvoja analitičkih metoda (AQbD) zasnovanih na HPLC 
tehnici. Takođe su prikazana i nedavna dostignuća u primeni DoE u razvoju LC metoda koje su 
pogodne za ispitivanje stabilnosti lekova, kao i LC-MS metoda. U budućoj perspektivi, 
preporučeno je izvođenje ispitivanja kvantitativnog odnosa između strukture i retencionog 
ponašanja (QSRR) analita u HPLC sistemu na osnovu podataka dobijenih primenom DoE. 

 
Ključne reči:  eksperimentalni dizajn, analitika lekova, tečna hromatografija pod visokim 

          pritiskom, razvoj i validacija analitičke metode 
 


