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Abstract 

Machine learning algorithms, and artificial intelligence in general, have a wide range of 
applications in the field of pharmaceutical technology. Starting from the formulation 
development, through a great potential for integration within the Quality by design framework, 
these data science tools provide a better understanding of the pharmaceutical formulations and 
respective processing. Machine learning algorithms can be especially helpful with the analysis of 
the large volume of data generated by the Process analytical technologies. This paper provides a 
brief explanation of the artificial neural networks, as one of the most frequently used machine 
learning algorithms. The process of the network training and testing is described and accompanied 
with illustrative examples of machine learning tools applied in the context of pharmaceutical 
formulation development and related technologies, as well as an overview of the future trends. 
Recently published studies on more sophisticated methods, such as deep neural networks and light 
gradient boosting machine algorithm, have been described. The interested reader is also referred 
to several official documents (guidelines) that pave the way for a more structured representation 
of the machine learning models in their prospective submissions to the regulatory bodies.  
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Introduction 

There is an ever-increasing need for the rapid development of pharmaceutical 
products, that can greatly rely on powerful computational methods. As in other research 
fields, artificial intelligence (AI), especially machine learning (ML) algorithms, has 
proven its great potential for deciphering complex relationships between multivariable 
data that are generated in the pharmaceutical development. Both formulation composition 
and processing parameters can be efficiently optimized, together with the minimized 
variability in the final products’ quality. ML modeling also provides the ability to analyze 
unstructured datasets and predict formulation and process properties for any given 
combination of independent variables. These are, therefore, undoubtedly important tools 
that coupled with the conventional statistical and regression methods create a data science 
platform (Figure 1). In addition to the better understanding of the pharmaceutical 
formulation and its manufacturing technology, data science is also resource-efficient.  

The introduction of process analytical technologies (PAT) has facilitated the 
acquisition of process-related data, that is high in volume, variety and velocity of 
generation. This is related to the big data concept (1), whereby ML tools can provide a 
greater understanding of the data generated during pharmaceutical processing, through 
the identification of sensitivities and interdependencies of variables. Thereby, the 
variability of final products (dosage forms), that could potentially affect therapeutic 
efficacy, can be reduced. 

 

 

Figure 1.  Relationships between different methodologies in data mining  

Slika 1.  Povezanost različitih tehnika za obradu podataka 
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Overview of the available AI methodologies 

Concepts of artificial intelligence and machine learning have been introduced in the 
middle of the 20th century. The versatility of their application in various fields, including 
healthcare, development of new medicines, and (bio)medicine in general, has been 
growing ever since (2). ML can be based on supervised and unsupervised learning 
algorithms. In the case of supervised learning, data are designated as input (independent) 
and output (dependent), and the algorithm searches to find the best relationship that can 
be used for generalization and predictions. These methods are comparable to the 
conventional regression techniques. Unsupervised learning, on the other hand, is based 
on the assessment of the dataset as a whole and recognition of patterns and features, that 
provide the means for further clustering, reduction of dimensionality, etc. The type of the 
analyzed data (e.g. discrete or continuous, binary or multiple classes), as well as the type 
of the model (e.g. parametric or non-parametric), are also relevant for the selection of the 
appropriate machine learning algorithm. Artificial neural networks (ANNs), as the most 
frequently used machine learning algorithms, can be used both for regression and 
classification. Damiati has provided a comprehensive comparison of different machine 
learning methods that are used in pharmaceutical research (1). 

There are many different types of ANNs. Multi-Layered Perceptron (MLP) is the 
most often used, as one of the simplest yet powerful networks. It is schematically 
represented in Figure 2. Input data are fed into the network through the input layer 
neurons whereby the number of neurons represents the number of input variables. Input 
data are further transformed and analyzed via activation functions in the hidden layer. As 
represented in Figure 2, sigmoid or hyperbolic functions are often used, but many others 
can be also implemented (3). This versatility of functions that can be applied to model the 
data is one of the most important reasons why ANNs can outperform conventional 
regression methods. Non-linear equations that are used by ANNs are fitted through a 
number of iterations, in order to capture the variability within the data. This is referred to 
as the training process, and there is a number of methods that can be used to adjust the 
synapses, i.e. networks´ weights and coefficients. Backpropagation algorithm, for 
instance, calculates the difference between the actual and predicted output, and based on 
the obtained error adjusts the weights and coefficients. The process is repeated until the 
network converges to the optimum solution. Depending on the type of connections 
networks can be fully or partially connected. Furthermore, the type of activation functions 
may vary in different layers. ANNs can have more than one hidden layer, and also the 
recurrence of the signal may occur (3). 

Deep learning is a more recent concept, based on complex ANN structures. In 
essence, deep learning neural networks have a large number of hidden layers (at least 
three but usually more), each layer has many nodes, and these networks are predominately 
built for large datasets. Deep learning networks include convolutional, recurrent, and fully 
connected networks and are discussed in more detail elsewhere (4). 
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Figure 2.  Representation of an artificial neural network with the most commonly used  

 activation functions (adapted from (3)) 

Slika 2.  Prikaz strukture neuronske mreže i najčešće korišćene aktivacione funkcije  

 (prilagođeno iz (3)) 

 

Other ML algorithms, such as neuro-fuzzy logic, symbolic regression, decision 
trees, genetic programming, etc., have also attracted attention. Fuzzy models provide the 
opportunity to model relationships between the input and output variables with if-then 
logical statements (5). Prerequisites for such a modeling approach are membership 
functions and fuzzy sets. For more details on neuro-fuzzy logic and neuro-fuzzy inference 
systems, the interested reader is referred to (6) for more details. Genetic programming 
(GP) is based on the natural selection theory, whereby the GP algorithm generates 



306 

 

 

populations of fitting equations and then searches for the optimal population by applying 
genetic operations such as “reproduction”, “crossover” or “mutation” (7). 

Machine learning algorithms may be used individually or combined in structures 
denoted as forests or ensembles. Ensembles are extremely powerful in the case of 
multicriteria optimization for large datasets.  

Illustrative examples of ML tools applied in the context of 
 pharmaceutical formulation development and related technologies 

The current approach to pharmaceutical development should be based on the quality 
by design principles (QbD) (8). The first step in the QbD approach is the definition of the 
quality target product profile (QTPP), followed by the identification of the critical quality 
attributes (CQA) of the product. The most important aspect of the QbD is the 
establishment of relationship(s) between the critical material attributes (CMA) and/or 
critical process parameters (CPP) that affect CQAs. Once these relationship(s) are 
identified and quantified, design space can be appointed, providing the opportunity to 
optimize and continuously control the product’s quality. Historically, quantitative 
analysis and appointment of the design space were based on experimental design, 
regression methods, and conventional statistical analysis. However, there are actually no 
limits on methods that can be used for quantitative assessments in the QbD context. In 
fact, a whole array of techniques is available, under the data science umbrella (Figure 1), 
that can efficiently be used for a variety of QbD elements. ML algorithms, especially 
ANNs, have been used in numerous examples of QbD-based pharmaceutical 
development, specifically due to their non-linear nature and the ability to capture complex 
relationships between CMAs and/or CPPs with CQAs for various pharmaceutical dosage 
forms (9–17).  

Simões et al. (18) have recently published a study on ANNs applied to QbD-based 
development of a poorly soluble and poorly permeable drug (class IV drug according to 
the BCS – Biopharmaceutics classification system) tablet formulation that was 
manufactured in industrial settings and compared to the reference product in 
bioequivalence studies. In short, after the initial risk assessment, the following CMAs and 
CPPs were identified as critical for the dissolution profile as a CQA: particle size 
distribution, tablets´ hardness, impeller speed, mesh size for sieving of the dried granules, 
granulation time and granulation liquid amount. Fully connected MLP networks were 
trained and validated. ANNs were then used to set product and process specifications, 
taking into account similarity factors for the predicted dissolution profiles. This allowed 
the establishment of the control strategy for the entire process. The optimal ANN model 
was validated on three industrial-scale batches manufactured with three different batches 
of the milled drug. The ANN model has successfully predicted dissolution profiles for the 
manufactured batches. This study represents a true power of ML algorithms in 
pharmaceutical products development. Lao et al. (19) have prepared an in-depth review 
of the application of ML in solid oral dosage form development in both academia and 
industry for the last three decades. 
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Table I represents selected examples of recently published reports on ANN models 
used in pharmaceutical development (for formulation and/or process optimization). 
Additional reviews of ANNs applied in pharmaceutical development are available (20–
26). 

Table I  Selected examples of ANN models used in pharmaceutical development (for 
 formulation and/or process optimization) 

Tabela I  Odabrani primeri modela zasnovanih na veštačkim neuronskim mrežama koji su 
 korišćeni u razvoju lekova (za optimizaciju formulacije i/ili procesa) 

 

ANN type(s) Dataset properties 
Brief comment on the 
network(s) purpose

Reference

kNN, single layer 
networks, RBF, 
SVM 

73 excipients with 
specified seven physico-
chemical properties 

Different neural networks 
were compared in terms of 
their ability to identify 
excipients with the 
potential to be used as 
transdermal enhancers 

(51) 

MLP, SVM, 
random forest, extra 
trees and bagging 

14 descriptors were used 
for several API datasets 

Prediction of active 
pharmaceutical ingredients 
solubility in several 
solvents

(52) 

MLP, RBF, 
Kohonen SOM 

90 entries on formulation 
composition, compression 
load and seven tableting 
parameters 

Understanding of tableting 
properties of lactose co-
processed with lipid 
excipients

(53) 

Tree based 
ensembles and 
symbolic regression 
methods 

17 formulations, 2 
compaction machines with 
3 compaction pressures 
and 2 compaction speeds 
were used 

Modeling of tablets tensile 
strength based on 
formulation composition 
and tableting process 
parameters

(54) 

ANNs, SVM, 
random forests, 
decision trees, 
lightGBM, kNN, 
naïve Bayes 
classifiers and deep 
NNs 

646 stability data of solid 
dispersions were collected 
and used for development 
of the classification 
models  

Evaluation of the influence 
of formulations, process 
parameters and stability 
data, in order to predict the 
solid dispersions physical 
stability  

(55) 

SVM, 
backpropagation 
neural network, 
genetic algorithms, 
mind evolutionary 
algorithm 

Four factors were 
evaluated (reflecting 
concentrations and type of 
materials) in a study 
according to the design of 
experiments

Assessment of the effect of 
the powder coating on the 
compactibility of the 
obtained materials 

(56) 

ANNs and deep 
neural networks 

145 formulation data were 
collected that contained 23 
active pharmaceutical 
ingredients 

Prediction of the properties 
of directly compressed 
orally disintegrating tablets 

(57) 
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Millen et al. (27) have compared multiple linear regression; stepwise, ridge and 
lasso regression; elastic network, regression trees and boosted regression trees as 
modeling techniques for the assessment of particle size distribution and tablets’ quality 
attributes following wet granulation on different scales (from laboratory to full-scale 
production). Landin has demonstrated that the combination of neuro-fuzzy logic and 
genetic programing allows modeling of the wet granulation process for different sizes and 
geometries of the wet granulation equipment (28). Belič et al. have applied ANNs and 
fuzzy models to minimize the capping tendency by the optimization of the tableting 
process (5). ANNs were also compared to adaptive neuro-fuzzy inference system 
(ANFIS) and multiple linear regression, in terms of modeling the compaction 
performance of novel pharmaceutical excipients (thermally and chemically modified 
starches) (29). Gams et al. (30) have developed an ML based method, using decision trees 
and support vector machines (SVM), that evaluates material properties and processing 
parameters for the successful production of tablets. 

Barmpalexis et al. (7) have compared multi-linear regression, particle swarm 
optimization (PSO) ANNs and genetic programming in the development of mini-tablets. 
PSO-ANNs were the only regression technique that was able to simultaneously model 
eight responses (describing powder and mini-tablets properties). PSO is an optimization 
tool based on bird flocking behavior (7).  

Colombo has provided an in-depth overview of AI applications in sophisticated 
targeted drug delivery systems, also proposing complete product development roadmaps 
based on the QbD principles (31). Hassanzadeh et al. have presented the significance of 
AI in the design of drug delivery systems (25). Adir et al. (32) have provided a review on 
how AI can be coupled with nanotechnology to enable a more efficient development of 
the precision cancer medicine. Similarly, Egorov et al. (33) have described the role of AI, 
coupled with robotics, microfluidics and nanotechnology, in the design of liposomes and 
polymeric systems. 

Lee et al. have presented an interesting approach to the patent literature review (34). 
Multilayer neural networks were developed in order to identify the trends of specific 
pharmaceutical technologies’ emergingness. Similarly, Lin et al. have created a SVM-
based classifier for the prediction of the licensing outcomes of pharmaceutical patents 
held by universities (35).  

The superiority of deep learning over conventional machine learning approaches 
(including multiple linear regression, partial least square regression, support vector 
machine, artificial neural networks, random forest, and k-nearest neighbors) has been 
recently demonstrated (36). Yang et al. (36) have extracted experimental data for 131 oral 
fast disintegrating films and 145 sustained-release matrix tablet formulations. 
Disintegration times and dissolution profiles for the respective formulations have been 
accurately modelled and the appropriate generalization has been confirmed by external 
datasets. The analyzed dataset contained types and contents of active pharmaceutical 
ingredients and excipients, process parameters and in vitro properties of dosage forms. 
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Deep learning has been demonstrated comparable, after 10-fold cross-validation, to 
random forest, single tree and genetic algorithms, for prediction of drug release from 
poly-lactide-co-glycolide (PLGA) microspheres (37).   

In addition to deep learning, other advanced machine learning algorithms have 
demonstrated their prediction efficiency. Light gradient boosting machine algorithm 
(lightGBM), as a high-performance boosting decision tree was used to predict 
complexation between cyclodextrins and active pharmaceutical ingredients (38), as well 
as complexion of berberine into phospholipid complexes (39). The same machine 
learning algorithm, lightGBM, was also used for the prediction of particle size and 
polydispersity index (PDI) of nanocrystals prepared by top-down methods (40). Apart 
from predictions of target variables, light gradient boosting machine also provided 
information on the relative contribution of the formulation factors and process parameters 
on the nanocrystals size and PDI (40). Decision-tree-based methods were demonstrated 
capable of predicting particle size of solid lipid nanoparticles as well (41).  

LightGBM, coupled with natural language processing (NLP) and blockchain 
technology, was also used to develop a management and recommendation system for the 
drug supply chain (42).  

Regulatory aspects of machine learning algorithms application in 
 pharmaceutical development 

There is a great interest and potential for the pharmaceutical industry to utilize 
machine learning algorithms in practically every aspect of the pharmaceutical products’ 
lifecycle. Henstock has reviewed and recommended steps for the successful integration 
of artificial intelligence, in the general context, in the pharmaceutical industry (43).  

Regarding the official guidelines and recommendations, Food and Drug 
Administration (FDA) has recently presented a discussion paper followed by the action 
plan published in 2021 (44), that is devoted to artificial intelligence and machine learning 
software used as a medical device. These documents provide valuable concepts, such as 
Good Machine Learning Practice and Real-World Performance that might pave the way 
for similar AI and ML applications in pharmaceutical development. According to the 
action plan (44), good machine learning practices refer to efficient data management, 
feature extraction, training, interpretability, evaluation and documentation. European 
Medicines Agency (EMA) has, on the other hand, initiated a big data task force, together 
with the Heads of Medicines Agencies (HMA). Presentations on the current state-of-the-
art use of AI in medicines, from the perspective of the relevant stakeholders, are available 
on EMA’s website (45). One of EMA’s strategic goals is to strengthen the ability to 
validate AI algorithms, and to deal with big data in general, since it is inevitable that these 
tools are going to be increasingly applied by the pharmaceutical industry (46). 

Danish Medicines Agency has published a proposal for the criteria and questions 
that can be expected to be asked for AI/ML algorithms across the various GxP-regulated 
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areas (47). It is stated that the proposal applies to static AI/ML algorithms that implement 
critical GxP-related functions and are trained using supervised learning.  

Future expectations 

Serialization (track and trace) could also rely on ML tools. Although it is not its 
primary purpose, the data generated by serialization could also be used in product 
development and for tracking patients’ adherence. Also, ML algorithms could be used for 
the identification of falsified medicines (48). 

More efficient manufacturing in the pharmaceutical industry can be expected with 
the integration of ML and PAT tools (49). Several such examples have been described in 
Table II. One of the greatest challenges related to successful PAT implementation is the 
analysis of high volume, multivariate data. Moreover, fast computations and decision 
making are of the utmost importance. These issues could be, potentially, solved by 
different ML tools. For example, Wong et al. (50) have developed a method based on 
recurrent neural networks that provides efficient regulation of critical quality attributes.    

With many opportunities for the application of AI tools also come some obstacles 
and challenges, especially if algorithms and models are meant to be used in the mass 
production of medicines, either for pharmaceutical development or production process 
monitoring, or both. The challenges are related to the volume of data and speed of its 
accumulation; size of datasets; training/learning time, over or under-fitting of models, etc. 
(1). With the evolution of the big data concept and advances in computing capability, it 
is to be expected that the technical challenges will be reduced, but the necessity for critical 
considerations of AI-based models will still remain, as for any other modeling approach. 
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Table II  Selected examples of machine learning (ML) algorithms used in conjunction with 
 the process analytical technologies (PAT) 

Tabela II  Odabrani primeri algoritama mašinskog učenja koji su korišćeni uz alatke za 
 procesnu analizu (procesne analitičke tehnologije) 

 

Application 
domain 

Specific purpose Brief comment on the algorithm  Reference 

Machine vision 

On-line monitoring of 
crystal growth 

Deep-learning based 
(convolutional neural network) 
image segmentation algorithm 

(58) 

In-line monitoring of 
pellets’ agglomeration 
during fluidized-bed 
coating 

Clustering-based image 
segmentation and convolutional 
neural network for classification 
of detected pellets

(59) 

Image analysis for the 
control of the tablet 
coating quality 

Support vector machine and 
convolutional neural networks 
were used for tablets’ image 
classification into four clusters 

(60) 

Real-time 
prediction of 
CQAs 

Prediction of the entire 
dissolution profile for 
modified release tablets 
based on NIR and 
Raman spectra of intact 
tablets 

Feedforward, fully-connected 
neural networks were developed; 
datasets consisted of the NIR and 
Raman spectra of each of the 
intact tablet as inputs and the 
dissolution curves of the same 
tablets measured by the 
dissolution method as outputs 

(61) 

Process 
monitoring 

In-line measurement of 
the air temperature 
distribution during a 
fluidized-bed 
granulation process 

Feed-forward ANNs with the 
back-propagation algorithm were 
used to make predictions of the 
temperature distribution and the 
hydrodynamics of the bed during 
the granulation process

(62) 

Biotechnology 

Description of biomass 
and product formation 
rate based on several on-
line process parameters

Parametric dynamic bioreactor 
model was integrated with neural 
networks of different architectures 

(63) 

ANN model was 
developed for at-line 
prediction of a 
recombinant protein 

Multilayer perceptron model was 
built in conjunction with the 
partial least squares model 

(64) 
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List of abbreviations 

AI – artificial intelligence 

ANFIS – adaptive neuro-fuzzy inference system 

ANN – artificial neural network 

BCS – biopharmaceutics classification system 

CMA – critical material attributes 

CPP – critical process parameters 

CQA – critical quality attributes 

EMA – European Medicines Agency 

FDA – Food and Drug Administration 

GBM – gradient boosting machine algorithm 

HMA – Heads of Medicines Agencies 

kNN – k-nearest neighbor 

ML – machine learning 

MLP – multi-layered perceptron 

NLP – natural language processing 

PAT – process analytical technology 

PDI – polydispersity index 

PSO – particle swarm optimization 

QbD – quality by design 

QTPP – quality target product profile 

RBF – radial basis function 

SOM – self-organizing map 

SVM – support vector machine  
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Kratak sadržaj 

Algoritmi mašinskog učenja, kao i veštačka inteligencija u širem smislu, su veoma značajni 
i primenjuju se u razne svrhe u okviru farmaceutske tehnologije. Počevši od razvoja formulacija, 
preko izuzetnog potencijala za integraciju u koncept dizajna kvaliteta (engl. Quality by design), 
algoritmi mašinskog učenja omogućavaju bolje razumevanje uticaja kako formulacionih faktora 
tako i odgovarajućih procesnih parametara. Algoritmi mašinskog učenja mogu biti od naročitog 
značaja i za analizu velikog obima podataka koji se generišu korišćenjem procesnih analitičkih 
tehnologija. U ovom radu su ukratko predstavljene veštačke neuronske mreže, kao jedan od 
najčešće korišćenih algoritama mašinskog učenja. Prikazani su procesi treninga i testiranja mreža, 
kao i ilustrativni primeri algoritama primenjenih za različite potrebe razvoja i/ili optimizacije 
farmaceutskih formulacija i postupaka njihove izrade. Takođe, dat je i pregled budućih trendova 
u ovoj oblasti, kao i novijih studija o sofisticiranim metodama, poput dubokih neuronskih mreža, 
i light gradient boosting algoritma. Zainteresovani čitaoci se takođe upućuju na nekoliko 
zvaničnih dokumenata (vodiča), po uzoru na koje mogu da se očekuju i preporuke za strukturiranu 
prezentaciju modela mašinskog učenja koji će se podnositi regulatornim telima u okviru 
dokumentacije koja se priprema za potrebe registracije novih lekova.  

 
Ključne reči: mašinsko učenje, veštačke neuronske mreže, razvoj lekova,  
  dizajn kvaliteta, procesne analitičke tehnologije 

 

 

 


