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Abstract 

As research related to healthspan and lifespan has become a hot topic, the necessity for a 
reliable and practical biomarker of aging (BoA), which can provide information about mortality 
and morbidity risk, along with remaining life expectancy, has increased. The chromosome 
terminus non-coding protective structure that prevents genomic instability is called a telomere. 
The continual shortening of telomeres, which affects their structure as well as function, is a 
hallmark of agedness. The aforementioned process is a potential cause of age-related diseases 
(ARDs), leading to a bad prognosis and a low survival rate, which compromise health and 
longevity. Hence, studies scrutinizing the BoAs often include telomere length (TL) as a 
prospective candidate. The results of these studies suggest that TL measurement can only provide 
an approximate appraisal of the aging rate, and its implementation into clinical practice and 
routine use as a BoA has many limitations and challenges. Nevertheless, measuring TL while 
determining other biomarkers can be used to assess biological age. This review focuses on the 
importance of telomeres in health, senescence, and diseases, as well as on summarizing the results 
and conclusions of previous studies evaluating TL as a potential BoA. 
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Introduction 

Over the last few decades, the life expectancy of human beings has increased 
globally, which is not always in positive correlation with their healthspan and 
productivity (1). This is due to the fact that aging is the leading cause of most pathological 
conditions that compromise healthspan and promote age-related diseases (ARDs), which 
constitute a constant and growing burden on healthcare systems around the world (2). The 
aging process is modulated by many genetic and non-genetic determinants, and it can be 
defined by chronological and biological age (3). Individuals of the same age show 
differences in many aspects of health status, implying that chronological age, i.e., the 
number of years that have passed since birth, does not reflect the functional individual 
status in the best way, which was the main reason for the development of the concept of 
biomarkers of aging (BoAs) (4). A BoA is a measure of biological age that is better at 
predicting the functional status of healthy individuals than chronological age, either alone 
or as part of a multivariate composite, and it can be a very useful tool for identifying those 
at risk for ARDs (5). Over the last few decades, a lot of effort has been made to identify 
a reliable, precise, and robust biomarker or group of BoAs (6). To be both accurate and 
useful, a true BoA must meet the following criteria specified by the American Federation 
for Aging Research (AFAR) in 2016: 1) it must be a better predictor of life expectancy 
than chronological age, 2) it must be capable of monitoring aging mechanisms and 
differentiating them from disease processes, 3) it must be non-invasive and able to be 
tested repeatedly, 4) it must be validated in humans after being tested on laboratory 
animals. While there are several potential BoAs, none has yet satisfied all the above 
criteria and proved to be a reliable indicator of the aging process. BoAs must be able to 
distinguish between the aging and disease processes, which is a difficult task and raises 
the question of whether the same BoA can be used for both. As a marker of the aging 
process, which is a risk factor for ARDs, a potential BoA should be able to predict the 
onset of ARDs and, furthermore, to distinguish them. It could be a biomarker that could 
be monitored in patients, especially with the aim of assessing the effectiveness of a 
therapy, so it could be a useful tool even in the assessment of the disease stage. Additional 
characteristics of a novel BoA include: easy measurability, accessibility, ability to 
identify underlying mechanisms that influence lifespan and healthspan, and other relevant 
features (7). A potential BoA should be assessed during pharmaceutical or non-
pharmaceutical interventions aimed at delaying the onset or progression of ARDs. Blood 
biomarkers with diverse abilities, in spite of some weaknesses, are increasingly being 
used nowadays since they provide additional information that aids in better predicting 
biological age (8).  

Telomeres are nucleoprotein chromosome terminus non-coding structures, formed 
by repetitive sequences TTAGGG (3). These structures are of critical importance for 
genomic integrity and stability, as well as preservation of the information contained in 
the genome (9). Each division of somatic cells causes telomere attrition until their 
critically short length triggers senescence and/or apoptosis (10). The attrition of these 
structures is controlled by telomerase, which synthesizes the lost sequences. Telomere 
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length (TL) may be a unique biological clock that can determine the biological age of an 
individual (11). Genetic mutations that impair telomere homeostasis cause premature 
aging with various manifestations called telomere syndromes, telomeropathies, telomere-
driven diseases, or telomere biology disorders (TBDs) (12). Based on the fact that the 
attrition of telomeres is an age-related process, the idea that TL may be used as a BoA 
arose. TL is suitable as a monitoring biomarker during intervention studies aimed at 
delaying the onset or the progression of ARDs, and it has predictive potential for disease 
severity and mortality (13). Although TL satisfies the AFAR’s criteria 3 and 4, the 
concurrence with criteria 1 and 2 is debatable (14). The correlation between TL and the 
onset of various ARDs, such as cardiovascular diseases (CVDs), cancer, dementia, and 
others, has been found (8). Because there is a lot of inconsistency in the findings, the 
nature of these connections and putative molecular processes behind the age-related 
telomere shortening phenomena are yet unclear (15). Different methods of TL 
measurement, variations among investigated populations, and other factors may 
contribute to this inconsistency. However, it is contentious whether the precision and 
reliability of TL measurement satisfy the criteria for usage as an assessment tool of 
biological aging (14). It is still unclear whether telomeric aging is an indicator of stress 
or a biological clock-like process (16). Notwithstanding this ambiguity, TL is one of the 
most considered BoAs, as well as a prospective individual biomarker in precision 
medicine (17). This review summarizes the literature on this topic and discusses the 
potential use of TL as a BoA for telomere-driven diseases. 

Telomeres  

The shielding role of nucleoprotein non-coding caps termed telomeres was 
discovered by Nobel Prize laureates Müller and McClintock many years ago (18, 19). 
These specialized structures in humans comprise thousands of repetitions of the 
TTAGGG hexanucleotide bound by shelterin, a protective six-protein complex, forming 
a 3D structure. This complex is implicated in chromatin remodeling and telomere 
structure shaping, preventing chromosomal end-to-end fusions and telomere fragility, 
which makes it vital for the protective features of these structures (20). Telomeres are 
composed of a G-rich, single-stranded section at the 3′-OH end of the leading strand as a 
result of incomplete DNA synthesis, which causes telomere attrition not only from 
damage but also with every cell division (15). The complex 3D telomere structure 
prevents fallacious identification of telomeric sites as DNA damage and its reparation by 
DNA damage repair (DDR) machinery (21). Telomere dysfunction activates the DDR 
pathway, causing cells to enter senescence (22–24). The previously mentioned shelterin 
complex is constituted of several telomere-specific proteins: telomeric repeat-binding 
factor 1 (TRF1), telomeric repeat-binding factor 2 (TRF2), protection of telomeres 
protein 1 (POT1), which localizes the telomeric sequence, repressor/activator protein 1 
(RAP1), TRF1-interacting nuclear protein 2 (TIN2), and protein associated with POT1 
(TPP1), which prevents activation of DDR pathways (10, 25). Telomeric regions of DNA 
are hidden inside the T-loop-D-loop structure that protect telomeres from premature 
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degradation. At the end of the telomere loop known as the T-loop, which comprises 
double-stranded DNA twisted around, the single-stranded section inserts back into the 
double-stranded DNA and forms the D-loop, i.e., displacement loop, evading the 
identification of telomeric sites as double-strand breaks (22, 26). The T-loop cannot be 
formed when TL comes to the critical limit, which leads to the appearance of a DDR 
signal. Consequently, cells stop proliferating and progressively enter senescence to avoid 
the destruction of the genome (15). In each somatic cell division cycle, a segment of 
telomere nucleotides is cleaved, and the telomere shortens by 50-200 bp, which would 
result in the wastage of genetic information from coding DNA in the absence of telomeres 
(27). Telomere shortening has the effect of limiting the number of divisions that somatic 
cells can undergo before their TL falls below the critical threshold, causing them to lose 
their protective features (23, 24, 28). When cells reach a threshold TL of about 4 kbp, 
they can no longer proliferate and enter senescence or apoptosis. As a result, telomere 
shortening reduces the lifespan of cells and acts as a tumor suppressor. Telomere erosion 
is the underlying mechanism of aging and can contribute to the development of ARDs. 
Hence, TL can be thought of as a "molecular clock of aging" (29, 30). Oxidative stress 
may directly damage suitable G-rich telomere sections, causing the cell to enter 
senescence (31, 32). Considering this, telomere-induced senescence has recently been 
identified as a key aging mechanism (33). There are multiple mechanisms for TL 
shortening, and oxidative stress-induced is one of them (34). It can be deduced that TL is 
used as a cumulative measure of cellular division and age, and multiple meta-analyses 
examine the relationship between those two variables (35, 36). Additionally, many studies 
have shown a relationship between TL and specific age-related disease processes, which 
can vary during the lifespan (7). Peripheral blood leukocyte telomere length (LTL) 
decreases by 30–35 bp per year (8), reaching approximately 5 kbp in adults older than 60 
years (37). Hence, longer TL is beneficial for healthy aging (38). When compared to a 
younger control group, TL values dropped to around 3.5 kbp in centenarians and then 
remained constant, even lengthened in supercentenarians (39). Long telomeres are likely 
to be the key component for exceptional longevity and a low risk of ARDs and TBDs 
(39). The functional integrity of telomeres, which is regulated by cell multiplication, 
oxidative stress, and DNA repair mechanisms, is strongly linked to the immune cell 
lifespan. Telomeres can be lengthened by lymphocytes through the action of telomerase. 
LTL may be particularly relevant to the immune system, in which leukocytes play a key 
role (4), so dysfunctional telomeres could be a trigger of immunosenescence (40,41) and 
lead to higher mortality from immune-mediated inflammatory diseases in those with 
severely decreased TL (40). In the same manner, decreased LTL has been linked to CVD 
pathogenesis (41, 42). The measurement of TL from peripheral blood leukocytes has 
many advantages, since blood is a biological material that is easy to collect and suitable 
for routine laboratory practice, and leukocytes are readily available and convenient to 
handle and isolate from whole blood. Whether peripheral blood LTL adequately reflects 
TL in other tissues and serves as a useful parametar in ARDs diagnostics, however, 
remains insufficiently clarified. 
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Telomerase 

As previously explained, telomeres naturally shorten with each cell cycle, either 
because of an end-replication problem or damage, and telomerase plays an important role 
in retrieving the lost DNA segments and preserving genetic information. Adult stem and 
germ cells, fetal tissues, and certain malignant cells evade telomere shortening by 
activating this enzyme (43). Telomerase activity in somatic cells is very low or non-
existent, and their TL diminishes as replication occurs (9). Telomerase is a 
ribonucleoprotein complex that may prolong telomeres by synthesizing telomeric DNA 
(44). In humans, this enzyme is composed of a human telomerase reverse transcriptase 
(hTERT), a telomerase RNA component (TERC), also known as human telomerase RNA 
(hTR), and an important auxiliary protein termed dyskerin (8). The nucleotide bases are 
added individually in the right order to recover lost telomeric DNA. Telomerase is active 
throughout early embryonic development and maintains proper telomere extension, but it 
becomes inactive after birth. Alternative splicing is one of the mechanisms involved in 
telomerase suppression during the embryonic and neonatal periods (28, 45). Most human 
cell types are immortalized as a result of TL maintenance. Telomeres lengthened in a 
telomerase-independent way in some cancer cells can be explained by the ALT 
(alternative lengthening of telomeres) pathway.  

Telomere erosion and the associated pathogenic processes are caused by the fact 
that most human somatic cells have limited or undetectable telomerase activity (6). On 
the other hand, a group of malignant cells have different mechanisms for maintaining TL, 
most likely involving genetic recombination (46), as well as reactivation of the 
telomerase silencer gene. This leads to incessant and unrestrained telomere extension 
(47). Despite the fact that telomerase overexpression is found in approximately 90% of 
human tumors, the use of telomerase activators in the treatment of telomerase-dependent 
diseases remains controversial (48, 49). 

Telomere length determinants  

The average LTL in humans is 11 kbp at birth and drops to below 4 kbp in the 
elderly (8). The rate of telomere attrition can vary with each cell division, and it is 
regulated by telomerase activity and telomere trimming mechanisms (15). Multiple data 
suggest that environmental and lifestyle factors might have a major impact on TL during 
the lifespan (Figure 1). Environmental variables one is exposed to in adulthood have been 
demonstrated to have long-term effects on TL. TL can be affected by various non-
modifiable and modifiable factors, such as gender, chronic stress, physical activity, 
smoking, body mass index, alcohol consumption, antioxidants, vitamins, minerals, 
exposure to heavy metals and other toxic substances, socioeconomic status, etc (40,50–
55). Gender is a non-modifiable determinant of TL since females have longer telomeres 
than males owing to the influence of estrogen, which stimulates the activity of telomerase 
(56). An additional well-known determinant that affects TL is psychological stress, which 
reduces telomerase activity and increases the formation of reactive oxygen 
species  (57,58). When compared to women with modest stress levels, highly stressed 
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women had reduced telomerase activity and a higher level of oxidative stress (57–59). 
Nutritional habits can also influence TL (51,60,61). TL is positively associated with the 
proper intake of micronutrients such as vitamins A, D, E, B vitamins (B3, B9, B12) and 
ascorbic acid (52,62). Vitamins’ effects on telomere stability can be explained via their 
antioxidative potential and DNA damage evasion. Additional TL modulators, including 
nutrients like Zn, Mg, and Fe, as well as omega-3 fatty acids, polyphenols, and curcumin 
are associated with longer TL via the enhancement of telomerase activity and DNA 
methylation, or the decrease of oxidative stress (15). Regular physical exercise, in 
combination to a balanced diet, aids in the maintenance of TL by lowering the level of 
oxidative stress and inflammation. Regular exercise routine has also been proven to 
stimulate telomerase (15,63,64). For example, moderate and high-intensity activity 
during a three-month lifestyle intervention leads to the lengthening of LTL, as well as 
stimulation of telomerase (58). Smoking and alcohol consumption are two other lifestyle 
variables that supposedly have an impact on TL. So far, however, there is little data 
supporting a hypothesis of alcohol-related telomere attrition (65). A recent meta-analysis 
found that ever-smokers have considerably shorter telomeres compared to non-smokers 
(66). Altogether, there is strong evidence that a healthy lifestyle helps to preserve 
telomeres. Genetic determinants can also be a very important modulator of TL. Even 
though DNA regions related to the maintenance of telomeric sequences are hereditable, 
variable local gene expression across different cell types results in inter-individual 
variation of TL (67–70). Testis, for example, have longer telomeres and increased 
telomerase expression, whereas cells with a higher turnover rate, such as blood or 
endothelial cells, have shorter telomeres (71). Extrinsic variables may also influence TL 
and attrition, as seen in the differences in TL across twins and family members (70,72). 
However, the results have not always been consistent among studies, which might be due 
to changes in methodology and sample size. A single determination of a TL may not 
accurately reflect the changes of this parameter throughout a lifetime (4). As a result, all 
metrics should be measured longitudinally. Finally, a better understanding of the 
maintenance of TL will likely lead to the discovery and implementation of novel 
therapeutic options aimed at reversing the harmful effects of physiological and oxidative 
stress on telomeres and thereby possibly extending the human lifespan (73). 
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Figure 1.  Telomere length determinants 

Slika 1.  Faktori koji utiču na dužinu telomera 

 

Telomeres and age-related diseases  

Aging is characterized by slow and gradual changes in an organism that result in a 
decreased ability to react and respond to extrinsic or intrinsic determinants over time (74). 
Aging is a significant risk factor for numerous diseases and mortality. Several potential 
BoAs with predictive ability have been found throughout the last few decades (75). 
Shortening the TL is considered to be a crucial step in ARDs development (76). The 
course of aging and life expectancy may be "programmed" early in the development and 
can be linked to telomere biology, according to a recent hypothesis (6). Early exposure 
variables determine TL dynamics, according to the "fetal programming of telomere 
biology" concept (77), and can lead to accelerated organismal aging in case of increased 
oxidative stress exposure accompanied by inflammation. It is assumed that telomere 
extension may increase the incidence of diseases associated with a higher rate of cellular 
proliferation, such as cancer, while eroded telomeres may increase the risk of CVDs (78). 
TL has been linked to the incidence and mortality rate, as well as course of ARDs, 
including CVDs in general (79), atherosclerosis (78), arterial hypertension (80), stroke 
(81), type 2 diabetes mellitus (T2DM), cancer, Alzheimer’s disease, as well as idiopathic 
pulmonary fibrosis (IPF), and liver disease (82). Other health conditions, addictions, and 
intoxications, obesity (83), inflammatory, and oxidative processes, all show the same 
telomere shortening. Medications, such as immunosuppressive agents, proton pump 
inhibitors, and insulin, have been shown to shorten telomeres (84–86). On the contrary, 
some interventions are being tested to prevent telomere attrition and treat telomere-driven 
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diseases, such as antioxidants, non-acarbose antidiabetic agents (T2DM), and lithium 
(bipolar disorder) (82). However, this impact may not be desirable in malignant cells 
(87,88). So far, there is no underlying mechanism that completely explains the genesis 
and causes of telomere attrition in these diseases (89). 

Cardiovascular diseases 

CVDs, as a group of ARDs, are a global issue, particularly in developing countries, 
representing the major cause of death, whose prevalence and frequency increase with 
advancing age. TERT expression and telomerase activity in cardiomyocytes have 
prompted the hypothesis that telomeres are particularly important for cardiovascular 
aging (90–92). Several studies have examined the implication of telomere-telomerase 
system in CVDs during the last two decades, with mixed results. The majority of them 
used LTL as a surrogate endpoint for TL in other tissues. Those with high telomere 
erosion rate had an increased risk of CVD, myocardial infarction, heart failure, and stroke, 
according to many prospective cohort studies (40,93–96). The LTL predictive ability of 
myocardial infarction and stroke among 800 subjects who took part in the Bruneck trial 
has been proven (97). In comparison to the control group, CAD (coronary artery disease) 
patients showed increased telomerase activity and shorter TL, and TL and telomerase 
activity were used to distinguish STEMI patients and controls (98). The correlation 
between attrited telomeres and atherosclerosis is due to a greater telomere erosion rate in 
early life (11). TL appears to be associated with an increased incidence of ischemic, 
atherothrombotic, and hemorrhagic stroke (99–103). It has been discovered that TL is 
linked to post-stroke mortality (104). CVD is a complex disease with multiple risk factors 
and various pathophysiological mechanisms, such as inflammation, oxidative stress, and 
dyslipidemia (105,106). Given the numerous factors that influence TL, discrepancies in 
results are not surprising. A large Mendelian randomization (MR) study with over 
261,000 individuals reveals a slight causal connection between increased LTL and 
decreased CVD risk, but  increased malignancy risk. (107). Seven SNPs have also been 
discovered in GWAS studies to be responsible for interindividual variability in LTL and 
an elevated risk of CVD. Chronic inflammation intertwined with oxidative stress is an 
important variable of atherosclerosis and accelerate telomere erosion in endothelial cells, 
vascular smooth muscle cells (VSMCs), and blood leukocytes, resulting in premature 
cellular senescence (108), and severe form of CVD (15). Patients with acute coronary 
syndrome have very unstable atherosclerotic plaques due to shorter telomeres and 
consequently increased proinflammatory activity (109). Individuals with short telomeres 
experience a delay in re-endothelialization after arterial damage and stent placement 
(110). However, whether the telomere-telomerase system status plays a causative role in 
the development and progression of CVDs, or whether this link is only an 
epiphenomenon, is yet unknown. 

 

 

 



113 

 

 

Type 2 diabetes mellitus  

In the past three decades, the prevalence of T2DM has risen dramatically. Several 
studies have shown that those with short telomeres are more likely to develop T2DM, to 
have a faster progression, and to be more prone to chronic complications (111–118). 
Furthermore, a recent meta-analysis revealed a significant relationship between TL and 
T2DM (119). According to autopsy research (120), T2DM patients’ beta cells have 
shorter telomeres than those without diabetes. Current studies, on the other hand, are 
inconclusive and mostly observational. In a recent general population study including 
3921 subjects (140), there was no link between LTL and patients’ status and their 
metabolic control. During an 8.5-year follow-up period, no link between eroded telomeres 
and the onset of T2DM was found (121). The significant variation in study designs, as 
well as the participants’ age, ethnicity, gender, and health condition, limits direct 
comparisons of different studies (15). As a result, the significance of telomere function 
in T2DM is unknown, and more data are needed to reveal a potential molecular link 
between TL and T2DM. 

Cancer 

Cancer is regarded as an ARD since the probability of its development increases 
with age. Numerous studies have researched whether TL is linked to cancer risk or 
prognosis (122). It is thought that critically low TL has an important role during malignant 
transformation and telomerase reactivation that enhances tumor invasion and metastasis 
by conferring immortality on the afflicted cells (123). Several pathways for telomerase 
reactivation have been postulated. Mutations in the TERT promotor region, as well as 
TERT gene amplification, can lead to enhanced TERT transcription in melanoma, 
hepatocellular carcinoma, glioblastoma, and urothelial cancer (124–127). In 
hepatocellular carcinoma, TERT expression could be increased because of viral enhancer 
components (128). Tumor cells can also evade telomere attrition by using homologous 
recombination pathways to prolong telomeres, which has been documented for 
neuroendocrine tumors and sarcomas (129). In breast and prostate cancer patients, short 
telomeres have also been associated with an advanced disease stage upon diagnosis, rapid 
disease progression, and poor survival (130). A low value of LTL was linked to a 
significantly increased incidence of malignancies and tumor-specific mortality (88,97). 
However, some studies found no significant link between LTL and the risk of malignant 
transformation (131), while others discovered that cancer patients had higher LTL than 
cancer-free participants (132). Two meta-analyses (133) confirmed these contradictory 
findings (134). Lung cancer patients had much shorter TL than healthy people, so it can 
be assumed that individuals with eroded telomeres are at a higher risk of developing this 
pathology, especially small cell carcinoma (135). Critically low TL has been linked to a 
high mortality rate in small cell lung cancer patients, predominantly at stage III or IV 
(136). These findings show that telomere shortening might be used as a biomarker for 
lung cancer susceptibility. TL is an independent prognostic marker in chronic 
lymphocytic leukemia (CLL) and eroded telomeres are linked with adverse outcomes, 
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which makes the telomere system important in CLL development, progression, and clonal 
evolution. Telomerase expression and activity are increased in the instances of short 
telomeres, which are linked to a poor prognosis (137). The mechanisms that lead to 
shelterin deregulation and TERT activation are poorly known. The activation of 
telomerase in cancer is of special relevance because it might be a target for innovative 
treatment methods in cancer patients. The fact that transformed malignant cells have 
eroded telomeres makes them more vulnerable to telomerase-targeting therapies (138). 
Telomere dynamics of transformed malignant cells is complex, and the importance of 
telomeres in the genesis and maintenance of malignant lesions is currently being studied. 
Short telomeres appear to enhance the chance of cancer development, whereas telomerase 
reactivation and intact telomeres appear to be critical for tumor growth and survival (15).  

Osteoporosis and osteoarthritis 

Bone cells, like many other tissues, show a reduction in TL with age. Furthermore, 
telomere dysfunction and osteoporosis are hallmarks of premature aging syndromes such 
as progeria (15). A comprehensive study of 2150 women aged 18 to 79 years revealed a 
substantial link between LTL and bone mineral density (139). Additionally, women with 
longer telomeres had a decreased probability of developing clinical osteoporosis. Several 
extensive studies, in contrast to the aforementioned, found no significant links between 
LTL, bone mineral density, and osteoporosis (140–142). The meta-analysis that included 
678 osteoarthritis (OA) patients and 1457 healthy subjects (143) showed shorter TL in 
individuals with OA than in healthy controls. The findings imply that TL is linked to the 
etiology and development of OA, and more research in this area will aid in understanding 
the function of TL in OA pathology. 

Neurodegenerative diseases 

Telomere shortening associated with age has been linked to the malfunction of 
neurons and impairment of cognitive functions in the elderly, so it is expected that TL is 
linked to neurodegenerative diseases such as Alzheimer’s disease (AD) (15). This 
hypothesis has been confirmed by a recent meta-analysis, which has proven a substantial 
difference in LTL of Alzheimer's patients and healthy subjects (144). It’s still unclear 
whether reduced LTL in these patients is a manifestation of AD or an initiator of dementia 
formation and exacerbation. On the other hand, a review of eight studies found no 
significant variation in LTL between 956 individuals with Parkinson’s disease and 1284 
healthy controls (8,144). Shortened TL, as a sign of premature biological aging, combined 
with several early-life variables, such as juvenile obesity, physical inactivity, and vitamin 
D defficiency, has been related to multiple sclerosis (MS) (145). Improved TL measuring 
approaches might contribute to a better understanding of the implication of TL in MS 
development and reveal new avenues for novel biomarkers and therapies in the future. 
TL has been linked to amyotrophic lateral sclerosis (ALS) in observational studies. High-
quality genome-wide association studies (GWASs) have identified single-nucleotide 
polymorphisms (SNPs) for LTL (146). 
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Psychiatric disorders  

56 studies involving 113,699 subjects with psychological distress have shown 
shorter TL in these patients compared with healthy individuals (147). Oxidative stress, 
intertwined with inflammation, is potentially an underlying biological mechanism that 
relates mental illnesses to telomere shortening. 

Immune-mediated inflammatory diseases 

Various immune-mediated inflammatory disorders (IMIDs), such as asthma, 
Crohn’s disease, psoriasis, rheumatoid arthritis, systemic lupus erythematosus, and atopic 
dermatitis, have been demonstrated to be implicated in chronic inflammation, which can 
potentially be initialized by telomere disruption and short telomeres (148). In individuals 
with atopic dermatitis, there is an increase in telomerase activity (149). Recent meta-
analyses verified the occurrence of decreased TL in rheumatoid arthritis patients 
(150,151). The expression and activity of telomerase have been found to be altered in 
these patients (152). 

Interstitial lung diseases  

Interstitial lung diseases (ILDs) reffer to a set of ailments characterized by 
pulmonary parenchymal fibrosis and/or inflammation. A variety of unusual telomerase 
gene mutations have been reported (50,153). Regardless of the underlying condition, 
fibrotic ILD patients with telomere gene mutations had a faster progression of disease 
(154). A number of patients with fibrotic ILDs had shorter TL compared to age-matched 
healthy individuals, and in IPF and fibrotic hypersensitivity pneumonitis, shorter TL has 
been associated with poor survival, regardless of disease severity (155). Patients with 
short telomeres have been shown to be more susceptible to immunosuppressant-induced 
adverse effects. 

Covid-19 

TL is a biomarker of interest even in the ongoing COVID-19 pandemic. Telomere 
attrition has been recommended as an indicator of disease severity in patients infected 
with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Tissues with 
critically short telomeres have a lower regeneration ability, which may impede their 
response to SARS-CoV-2 infection, especially in the elderly (156). TL might be assessed 
as a predictive biomarker in future trials with a larger number of patients, and it might 
help researchers better understand COVID-19 pathophysiology (157). Identification of 
high-risk patients and individualized treatment interventions can give additional insights 
into COVID-19 outbreak control (158). 

Conclusion and future perspectives 

Quantifying biological aging to provide representative lifespan or healthspan 
assessments is of growing importance (159). As the world’s old population grows, 
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medical expenses for comorbidities are increasing, putting a strain on aging societies and 
healthcare systems. By changing the approach to this problem, it may be possible to treat 
multiple diseases by targeting “aging” itself (160).  

So far, the research into BoAs has mainly been inconclusive and incomplete, and 
there is a general skepticism regarding the chances of meeting AFAR’s strict 
requirements (161). A composite measure may be more relevant and applicable since a 
single BoA may not reflect the aging process completely and cannot be used to assess it. 
The discovery of the phenomena of age-associated telomere erosion has made TL one of 
the most promising BoAs. Der et al. investigated whether LTL fits the requirements for 
being regarded as a single BoA and whether it contributes to a composite biomarker 
panel. They created two composite scores, one including LTL and the other one without 
it. There was a little difference between them, but both composite scores were better in 
their prediction of health outcomes than chronological age (161). Composite BoAs have 
the potential to exceed age and should be investigated more in the future. Considering the 
entanglement of telomere dysfunction in disease onset, cellular vitality or activity, aging 
or longevity, measuring the LTL provides a clinical parameter that can be useful for 
diagnosis and prognosis (8,164–166), together with the evaluation of various therapies’ 
efficiency, both conventional (167) and nonconventional (3). Because the level of 
telomere erosion is so important for the assessment of human health and course of the 
aging process, TL is by far the most researched biomarker of ARDs. As a result, various 
conclusions have been drawn about the relationship between TL, age, illness, stress, and 
a variety of other health outcomes. TL measurements can also be used as a precision 
medicine tool, assisting in the early detection of ARDs. Even though LTL measurement 
has been recommended as a predictor of the onset and progression of diseases, even death, 
in several studies, there is still a need for more data before its clinical application. The 
primary barriers to the extensive application of TL measurement are analytical challenges 
and pathophysiology features that are incompletely understood (8). The existing 
analytical methods are inadequately standardized and offer inconsistent results, thus 
limiting the comparability of the data. Harmonization of TL measurement amongst 
laboratories requires further work, including reference ranges stratified by age, gender 
and different cell types. This would allow researchers to compare the results from 
different studies and establish a gold standard for clinical testing (71). A variety of pre-
analytical factors must also be taken into account. It is still unclear what the indications 
for LTL measurement are and which biological sample should be used for TL 
measurement. For the time being, TL will only be evaluated in research programs and 
clinical trials due to this issue. The fact that the average LTL measurement in peripheral 
blood may not adequately represent the TL in other cell types is a major drawback in 
clinical studies (15). Longitudinal monitoring of TL will be of particular importance in 
providing a dynamic picture of TL change over time (162). The link between telomere 
attrition and the aging process is shrouded in uncertainty, and the causal relationship is 
still insufficiently clarified. Hopefully, future advancements in these fields will 
considerably benefit society by lessening the demand for geriatric medical care.  
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Kratak sadržaj 

Kako su istraživanja na temu starenja postala sve popularnija, javila se potreba za 
pouzdanim i praktičnim biomarkerom starenja, koji može pružiti informacije o riziku od 
mortaliteta i morbiditeta. Telomere su nekodirajući krajevi linearnih hromozoma koji održavaju 
njihovu stabilnost i integritet. Ćelijsko starenje i starenje organizma karakteriše progresivno 
skraćivanje telomera, što ugrožava njihovu strukturu i funkciju. Skraćivanje telomera je u vezi sa 
povećanom incidencom bolesti povezanih sa starenjem i lošom stopom preživljavanja, što 
ugrožava zdravlje i skraćuje životni vek. Stoga je dužina telomera dugo vremena prepoznata kao 
jedan od najboljih biomarkera starenja. Međutim, nedavna istraživanja ukazuju na to da dužina 
telomera može da pruži samo približnu procenu brzine starenja, pa je implementacija ovog 
biomarkera u kliničku praksu i rutinsku primenu praćena mnogim ograničenjima i izazovima. 
Uprkos tome, merenje dužine telomera, uz istovremeno određivanje drugih biomarkera, može 
poslužiti za procenu biološke starosti. Fokus ovog rada je na značaju telomera u ljudskom 
zdravlju, starenju i bolestima, kao i na sumiranju rezultata i zaključaka dosadašnjih studija koje 
su se bavile ispitivanjem dužine telomera kao potencijalnog kandidata za biomarker starenja. 

 
Ključne reči:  dužina telomera, biomarker starenja, telomeraza,  
    bolesti povezane sa starenjem 
 

 

 

 


