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Abstract 
Nuclear factor erythroid 2-related factor 2 (NRF2; encoded by NFE2L2) is an inducible 

transcription factor that regulates the expression of a large network of genes encoding proteins 
with cytoprotective functions. NRF2 also has a role in the maintenance of mitochondrial and 
protein homeostasis, and its activation allows adaptation to numerous types of cellular stress. 
NRF2 is principally regulated at the protein stability level by three main ubiquitin ligase systems, 
of which the regulation by Kelch-like ECH-associated protein 1 (KEAP1), a substrate adaptor 
protein for Cul3/Rbx1-based ubiquitin ligase, is best understood. KEAP1 is a multi-functional 
protein and, in addition to being a substrate adaptor, it is a sensor for electrophiles and oxidants. 
Pharmacological inactivation of KEAP1 has protective effects in animal models of human 
disease, and KEAP1 is now widely recognized as a drug target, particularly for chronic diseases, 
where oxidative stress and inflammation underlie pathogenesis. Many compounds that target 
KEAP1 have been developed, including electrophiles that bind covalently to cysteine sensors in 
KEAP1, non-electrophilic protein-protein interaction inhibitors that bind to the Kelch domain of 
KEAP1, disrupting its interaction with NRF2, and most recently, heterobifunctional proteolysis-
targeting chimeras (PROTACs) that promote the proteasomal degradation of KEAP1. The drug 
development of KEAP1-targeting compounds has led to the entry of two compounds, dimethyl 
fumarate (BG-12, Tecfidera®) and RTA-408 (omaveloxolone, SKYCLARYS®), in clinical 
practice. In 2013, dimethyl fumarate was licenced as the first oral first-line therapy for relapsing-
remitting multiple sclerosis and is also used for the treatment of moderate-to-severe plaque 
psoriasis. In February 2023, omaveloxolone was approved by the United States Food and Drug 
Administration as the first and only drug for patients with Friedreich’s ataxia. 
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NRF2 

Nuclear factor erythroid 2-related factor 2 (NRF2; encoded by the NFE2L2 
gene) is a member of the cap’n’collar (CNC) basic-region leucine zipper transcription 
factor family (1). NRF2 is comprised of seven domains termed NRF2-ECH homology 
(Neh) 1–7 domains (Figure 1A). In the nucleus, NRF2 forms a heterodimer with 
members of the small musculoaponeurotic fibrosarcoma (sMAF) family of 
transcription factors, and the heterodimer controls the expression of approximately 
250 genes, which contain antioxidant/electrophile response elements (AREs) in their 
regulatory regions (2). Following translation, the resulting proteins have widely 
cytoprotective functions, including drug-metabolizing, antioxidant, and anti-
inflammatory, and also have roles in the maintenance of mitochondrial and protein 
homeostasis (1, 3).  

Regulation of NRF2 

Under homeostatic conditions, NRF2 is a short-lived unstable protein, with a 
half-life of just a few minutes. Three main ubiquitin ligase systems regulate the 
protein stability of NRF2: Kelch-like ECH-associated protein 1 (KEAP1), a substrate 
adaptor protein for Cul3/Rbx1-based ubiquitin ligase; β-TrCP, a substrate adaptor for 
Skp1-Cul1/Rbx1-based ubiquitin ligase; and the endoplasmic reticulum (ER)-residing 
HRD1 (Figure 1B). Following ubiquitination, NRF2 undergoes rapid proteasomal 
degradation (1). 

KEAP1 is the main negative regulator of NRF2 (4). NRF2 binds to the Kelch 
domain of KEAP1 (which forms a β-propeller structure) via the N-terminal Neh2 
domain of the transcription factor, which has a low-affinity DLGex motif (forming a 
three-helix structure) and a high-affinity ETGE motif (forming a β-hairpin structure) (5, 
6). This two-site binding of NRF2 to the KEAP1 homodimer is an essential requirement 
for the subsequent ubiquitination and proteasomal degradation of NRF2 (7). Time-lapse 
microscopy experiments have illustrated the degradation of NRF2 by KEAP1 in single 
live cells co-expressing fusion proteins of EGFP-KEAP1 and NRF2-mCherry (8). 
Furthermore, experiments in cells co-expressing fusion proteins of EGFP-NRF2 and 
KEAP1-mCherry utilizing quantitative Förster resonance energy transfer-based 
multiphoton fluorescence lifetime imaging microscopy (FRET-FLIM) revealed that 
KEAP1 uses a cyclical mechanism to target NRF2 for degradation (9-11). According to 
this mechanism, the interaction between KEAP1 and NRF2 follows a cycle whereby 
the KEAP1/NRF2 protein complex sequentially adopts two distinct conformations, 
"open," in which NRF2 interacts with a single molecule of KEAP1, followed by 
"closed," in which NRF2 binds to both members of the KEAP1 dimer; in this 
conformation, NRF2 undergoes ubiquitination and subsequent proteasomal 
degradation, and free KEAP1 is regenerated.  
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Figure 1.   (A) Domain structure of NRF2. NRF2 binds KEAP1 through its N-terminal 

Neh2 domain. Neh4 and Neh5 are transactivation domains through which 
NRF2 recruits cAMP response element-binding protein (CREB)-binding 
protein (CBP) and/or receptor-associated coactivator 3 (RAC3). Through 
its Neh7 domain, NRF2 binds to retinoid X receptor alpha (RXRα), one of 
the negative regulators of NRF2. Through its Neh6 domain, NRF2 binds to 
β-transducin repeat-containing protein (β-TrCP). NRF2 binds to sMAF and 
DNA through its Neh1 domain. The C terminal Neh3 domain of NRF2 
recruits chromo-ATPase/helicase DNA-binding protein 6 (CHD6). Also 
shown are the low affinity binding ‘DLG’ motif and the high affinity binding 
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‘ETGE’ motif in the N-terminal Neh2 domain, through which NRF2 binds 
to KEAP1, as well as the phosphodegron in the Neh6 domain through which, 
following phosphorylation by glycogen synthase kinase 3 (GSK3), NRF2 
binds to β-transducin repeat-containing protein (β-TrCP). (B) Regulation of 
NRF2. NRF2 is regulated primarily at the protein stability level by three 
main ubiquitin ligase systems: KEAP1, a substrate adaptor protein for 
Cul3/Rbx1-based ubiquitin ligase; β-TrCP, a substrate adaptor for Skp1-
Cul1/Rbx1-based ubiquitin ligase; and the endoplasmic reticulum (ER)-
residing HRD1. KEAP1-mediated degradation of NRF2 requires that the 
cysteine sensors of KEAP1 are in the reduced state. To bind β-TrCP, NRF2 
has to be phosphorylated by glycogen synthase kinase 3 (GSK3), which in 
turn requires prior phosphorylation of NRF2 by a priming kinase. NRF2 is 
degraded by HRD1 during ER stress. The ubiquitinated NRF2 is then 
targeted for proteasomal degradation. 

Slika 1.   (A) Struktura domena NRF2. NRF2 vezuje KEAP1 preko svog N-terminal 
Neh2 domena. Neh4 i Neh5 su transaktivacioni domeni putem kojih NRF2 
angažuje CREB-vezujući protein (CBP) ili koaktivator 3 povezan sa 
receptorom (RAC3). Putem svog Neh7 domena, NRF2 se vezuje za retinoid 
X receptor alfa (RXRα), jedan od negativnih regulatora NRF2. Putem svog 
Neh6 domena, NRF2 se vezuje za protein koji sadrži ponovke β-transducina 
(β-TrCP). NRF2 se vezuje za sMAF i DNK putem svog Neh1 domena. C-
terminalni Neh3 domen NRF2 angažuje CHD6. Takođe su prikazani i vezni 
motiv niskog afiniteta ‘DLG’ i vezni motiv visokog afiniteta ‘ETGE’ u N-
terminalnom Neh2 domenu, kojima se NRF2 vezuje za KEAP1, kao i 
fosfodegron u Neh6 domenu kojim se, nakon fosforilacije glikogen-sintaza-
kinazom 3 (GSK3), NRF2 vezuje za protein koji sadrži ponovke β-
transducina (β-TrCP). (B) Regulacija NRF2. NRF2 primarno regulišu tri 
glavna sistema ubikvitin ligaze: KEAP1, supstratni adapter za Cul3/Rbx1-
zavisnu ubikvitin ligazu; β-TrCP, supstratni adapter za Skp1-Cul1/Rbx1-
zavisnu ubikvitin ligazu; i HRD1 koji se nalazi u endoplazmatičnom 
retikulumu (ER). KEAP1-posredovana razgradnja NRF2 zahteva da 
cisteinski senzori KEAP1 budu u redukovanom stanju. Kako bi vezao β-
TrCP, NRF2 mora da bude fosforilovan glikogen-sintaza-kinazom 3 
(GSK3), što zahteva prethodnu fosforilaciju NRF2 prajming kinazom. 
HRD1 razlaže NRF2 tokom ER stresa. Ubikvitinovani NRF2 potom postaje 
meta za proteazomsku razgradnju. 

 

Pharmacological targeting of KEAP1  

KEAP1 is a multi-functional protein and, in addition to its substrate adaptor 
function, it also serves as a sensor for exogenous and endogenous electrophiles and 
oxidants (12-14). This function is due to the fact that KEAP1 is equipped with highly 
reactive cysteine residues which, when chemically modified, such as via oxidation or 
Michael addition reactions, disrupt the cycle of KEAP1-mediated degradation of NRF2 
(9). This leads to accumulation of the KEAP1/NRF2 protein complex in the “closed 
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conformation”, without release of NRF2 (9, 10, 15). As a result, free KEAP1 is not 
regenerated, newly-synthesized NRF2 is stabilized, and following nuclear translocation, 
activates transcription of its target genes. Some examples of electrophilic NRF2 activators 
are given in Figure 2. 

 
Figure 2.  Examples of electrophilic NRF2 activators 
Slika 2.  Primeri elektrofilnih NRF2 aktivatora 

 
KEAP1 is also a target for non-electrophilic small molecules, all of which are 

designed to bind to the Kelch domain of the protein. In contrast to electrophiles, binding 
of these compounds to KEAP1 inhibits its interaction with NRF2; such compounds are 
known as KEAP1-NRF2 protein-protein interaction (PPI) inhibitors. Experiments using 
titration nuclear magnetic resonance (NMR) spectroscopy have revealed that, in contrast 
to electrophiles, which do not cause dissociation of NRF2, non-electrophilic PPI 
inhibitors conform to the “hinge-and-latch” mechanism of NRF2 activation, whereby 
they cause dissociation of the weaker KEAP1-DLGex interaction (as a latch), leaving 
intact the strong KEAP1-ETGE interaction (as a hinge) (15).  

Based on the crystal structure of the Kelch domain of KEAP1, several peptide and 
small-molecule PPI inhibitors have been designed and tested as NRF2 activators (16). 
Some examples of non-electrophilic small-molecule NRF2 activators are given in 
Figure 3. Interestingly, some PPI inhibitors bearing a phenyl bis-sulfonamide moiety, 
such as compound 11 (Figure 3), bind to KEAP1 in a "peptidomimetic" conformation, 
resembling the KEAP1-Kelch : NRF2-ETGE peptide complex (17). A structure-based 
virtual screen of more than one billion compounds identified small-molecule PPI 
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inhibitors with nanomolar affinities for KEAP1 in vitro (18). Nonetheless, most non-
electrophilic PPI inhibitors are less potent in activating NRF2 in cell-based systems in 
comparison with the most potent electrophiles, suggesting that they are not taken up by 
cells as efficiently as the electrophiles. However, efforts to improve cellular uptake and 
metabolic stability have led to the design of compounds with potencies similar to 
electrophiles. One example is the metabolically stable isoquinoline PRL-295 (Figure 3) 
(19). PRL-295 has a very similar potency to the electrophile sulforaphane (Figure 2) in 
mouse and human cells, although the bioavailability of orally-administered PRL-295 and 
its ability to activate NRF2 is seen mainly in the liver (20). The ability of PRL-295 to 
engage KEAP1 in cells and in vivo was demonstrated by the use of the cellular thermal 
shift assay (CETSA), which showed increased thermostability of ectopically expressed 
fluorescently tagged KEAP1 (KEAP1-mCherry), as well as endogenous KEAP1 from 
cells and murine livers following treatment with PRL-295. FRET-FLIM imaging 
experiments of live cells co-expressing sfGFP-NRF2 and KEAP1-mCherry fusion 
proteins showed that treatment with this isoquinoline prolonged the fluorescence lifetime 
of the FRET pair donor, sfGFP-NRF2, indicating disruption of the KEAP1-NRF2 protein 

 
Figure 3.  Examples of non-electrophilic NRF2 activators which bind to the Kelch 

domain of KEAP1, inhibiting the KEAP1-NRF2 protein-protein 
interactions. These compounds are also known as protein-protein 
interaction (PPI) inhibitors. 

Slika 3.  Primeri neelektrofilnih NRF2 aktivatora koji se vezuju za Kelch domen 
KEAP1, inhibirajući KEAP1-NRF2 protein-protein interakcije. Ova 
jedinjenja su poznata i kao inhibitori protein-protein interakcija (PPI). 
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complex (20). Similar experiments were also conducted with compound 22s (Figure 3), 
a PPI inhibitor from the 1,4-diaryl-1,2,3-triazole chemical class, further confirming the 
ability of PPI inhibitors to disrupt the KEAP1-NRF2 protein complex in live cells (21).  

Recently, two independent groups (22, 23) have employed targeted protein 
degradation through proteolysis-targeting chimeras (PROTACs) as a strategy to design 
heterobifunctional degraders of KEAP1. In both cases, these KEAP1-targeting 
PROTACs were based on the small molecule KI-696 (Figure 3), which was originally 
designed to bind with high affinity to the Kelch domain of KEAP1 and potently inhibit 
the protein-protein interactions between KEAP1 and NRF2, leading to NRF2 activation 
(24). To create these PROTACs, KI-696 was linked to a ligand that binds the Cullin4-
Rbx1 ligase-cereblon (CRBN) complex, resulting in the CRBN-dependent ubiquitination 
and subsequent degradation of KEAP1. A very important feature of this strategy, which 
is in contrast with classical small molecule inhibitors, is that, following the degradation 
of the protein of interest, the PROTAC is recycled to target another molecule of the 
protein of interest, making this mechanism of action catalytic and thus highly efficient. 
Two examples of KEAP1-targeting PROTACs, namely DGY-06-177-pk2 and compound 
14, are shown in Figure 4. 

 

 
Figure 4.   Examples of KEAP1-targeting PROTACs that activate NRF2 by promoting 

the proteasomal degradation of KEAP1 
Slika 4.  Primeri himera usmerenih na proteolizu (PROTACs) koje targetiraju 

KEAP1 što aktivira NRF2 podsticanjem proteazomske degradacije KEAP1 
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The cytoprotective role of NRF2 

Targeting of KEAP1 by the compounds described above, regardless of the precise 
mechanism of action, leads to NRF2 activation and enhanced broad cytoprotection. The 
importance of NRF2 activation in human health has been demonstrated by the 
associations between functional genetic variations of NFE2L2 and disease risk in humans. 
Thus, NFE2L2 polymorphisms (NFE2L2 is the gene that encodes NRF2), which result in 
lower NRF2 expression, increase the risk for diabetes mellitus (DM) (25), coronary heart 
disease (26, 27), age-dependent increase in vascular stiffness (28), respiratory failure in 
chronic obstructive pulmonary disease (COPD) patients (29), smoking-induced 
emphysema (30), gastrointestinal inflammation infection (31), and tuberculosis (32). 
Conversely, a protective haplotype allele has been identified and shown to associate with 
delayed onset of Parkinson’s disease (PD) in a Swedish cohort and a decreased risk in a 
Polish cohort (33), as well as in four other independent European case-control studies 
(34), although not in a Taiwanese cohort (35), whereas polymorphisms leading to 
decreased NFE2L2 expression occur at high frequency in a Chinese cohort of PD patients 
(36). Moreover, NRF2 signalling is impaired in many neurological conditions, such as 
Friedreich’s ataxia (FRDA) (37), Huntington disease (HD) (38), and autism spectrum 
disorder (ASD) (39), whereas its pharmacological activation is beneficial (40).  

Interestingly, in mouse neurons, epigenetic inactivation of the promoter of Nfe2l2 
leads to its repression (41), strongly suggesting that the benefits of NRF2 activation in 
the brain are mediated by its effects in astrocytes and microglia, the brain-resident 
macrophages. Notably, although the prevailing view is that NRF2 activation is protective 
mainly against chronic disease (16), there is also emerging evidence for a potential 
protective role of NRF2 against viral infections, including Severe Acute Respiratory 
Syndrome Coronavirus 2 (SARS-CoV2) (42-44). Thus, NRF2-mediated gene expression 
is suppressed in lung biopsies obtained from COVID-19 patients (43), whereas the NRF2 
activators 4-octyl-itaconate, dimethyl fumarate, sulforaphane (Figure 2), bardoxolone and 
bardoxolone methyl, inhibit SARS-CoV2 replication and/or viral infection (43, 45, 46). 

The cytoprotective role of electrophilic NRF2 activators 

A large body of laboratory experiments in cell culture and animal models, many of 
which compare wild-type and NRF2-knockout mice, has generated convincing 
experimental evidence that pharmacological NRF2 activation is protective against non-
neoplastic disease, particularly in cases where oxidative stress and inflammation underlie 
the pathogenesis of the disease (16, 47).  

Cyclic cyanoenones 

The electrophilic cyclic cyanoenones represent some of the most NRF2 activators 
known to date and activate NRF2 by modifying C151 in KEAP1 irrespective of their size 
and shape (48-50). Thus, the acetylenic tricyclic bis(cyanoenone) TBE-31 (Figure 2) 
induces the classical NRF2 transcriptional target NAD(P)H: quinone oxidoreductase 1 
(NQO1) in Hepa1c1c7 cells at low nanomolar concentrations, with a Concentration that 
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Doubles the NQO1 enzyme activity (CD value) of 1 nM (51). TBE-31 is also highly 
potent and bioavailable following oral administration to mice (52) and is suitable for 
chronic administration (53). Notably, pharmacokinetic and pharmacodynamic studies in 
mice have shown that, although TBE-31 has a terminal elimination half-life of 10.2 h 
after a single dose, its cytoprotective effects are evident for much longer periods of time, 
beyond the half-life of the compound (54). This is because the cytoprotection is not due 
to TBE-31 itself, not even due to NRF2, but due to the function of the transcriptional 
targets of NRF2, which are proteins with long half-lives. This long-lasting 
pharmacodynamic effect allows for chronic dosing with a low frequency. Thus, chronic 
(∼30 weeks) topical application of TBE-31 twice a week to the murine skin resulted 
reduction in tumor multiplicity and burden in a model of cutaneous squamous cell 
carcinoma caused by chronic exposure to low doses of solar-simulated ultraviolet 
radiation (54). Oral administration of TBE-31, three times per week for three weeks, 
abolished the development of pre-neoplastic foci in a rat model of aflatoxin-mediated 
hepatocellular carcinoma (51). Similarly, oral administration of TBE-31, three times per 
week, decreased hepatic steatosis and fibrosis in wild-type mice fed a high-fructose plus 
high-fat diet, but not in their NRF2-deficient counterparts (53). In a rat model of epilepsy, 
administration of the closely related pentacyclic cyanoenone RTA-408 (Figure 2) during 
the first week after seizure onset increased the levels of ATP, prevented neuronal death 
in the hippocampus, and dramatically reduced (by 94%) the frequency of late spontaneous 
seizures for at least 4 months following status epilepticus (50). 

Dimethyl fumarate  

Dimethyl fumarate (DMF) (Figure 2) is one of the earliest NRF2 activators 
discovered. DMF was one of the compounds within a panel of fumaric acid derivatives 
which was found to induce the NRF2 transcriptional targets NAD(P)H:quinone 
oxidoreductase 1 (NQO1) and glutathione S-transferases (GSTs) in multiple organs 
following oral administration to mice (55). Induction of NQO1 was also observed 
following DMF exposure of human peripheral blood mononuclear cells (PBMCs) ex 
vivo and in PBMCs isolated from DMF-treated multiple sclerosis patients (56). DMF 
activates NRF2 by biding to C151 in KEAP1 (57-59). The same cysteine in KEAP1 is 
also the target of 4-octyl itaconate (Figure 2), a cell-permeable analogue of itaconate, 
an endogenous anti-inflammatory metabolite which forms during macrophage 
activation (60). 

Sulforaphane  

The isothiocyanate sulforaphane (Figure 2) is one of the most potent naturally 
occurring NRF2 activators known. It was isolated from extracts of broccoli (Brassica 
oleracea var italica) as the principal NQO1 inducer (61). Broccoli hybrids with high 
content of the sulforaphane precursor, glucoraphanin, have been developed through 
genome introgression from the wild species Brassica villosa, and commercialised as 
Beneforté broccoli (62, 63). Sulforaphane is now considered a classical NRF2 activator 
and has consistently shown induction of NRF2-transcriptional targets, including NQO1, 
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and demonstrated protective effects in animal models (61, 64). Induction of NQO1 was 
also observed in human peripheral blood mononuclear cells (PBMCs) ex vivo following 
sulforaphane exposure, as well as in PBMCs and skin biopsies isolated from human 
subjects that had received 3-day-old broccoli sprout extracts as a source of sulforaphan 
(65, 66). Sulforaphane activates NRF2 by modifying C151 in KEAP1 (57, 67, 68).  

Extracts of broccoli and 3-day-old broccoli sprouts represent sources of 
sulforaphane and many clinical trials have used such preparations to test for their effects 
in healthy or at-risk subjects, including populations exposed to environmental pollutants, 
as well as in people with chronic low-grade inflammation, allergy, asthma, COPD, ASD, 
depression, schizophrenia, diabetes, metabolic syndrome, chronic kidney disease, cystic 
fibrosis, skin disease (such as epidermolysis bullosa simplex and pachyonychia 
congenita), age-associated skin ageing and cardiovascular dysfunction, prostate, breast, 
skin, lung and head and neck cancer (64). Sulforaphane is a highly reactive, unstable 
compound. Stabilized sulforaphane preparations have been developed to overcome this 
limitation, such as Prostaphane® and Sulforadex® (SFX-01). Prostaphane® has been used 
in clinical trials in patients with prostate cancer. Sulforadex® (SFX-01) has been used in 
patients with subarachnoid haemorrhage.  

As mentioned above, the cytoprotective action of pharmacological NRF2 activators 
is carried out by the transcriptional targets of NRF2, which are proteins with long half-
lives, allowing low frequency dosing regimes in animals. However, what dosing regime 
will be most beneficial in humans is still unclear, and the decision is likely to depend on 
the pharmacological agent as well as the specific disease. In this context, it is noteworthy 
that administration of an intermittent (once a week) high-dose (500 mg) of the NRF2 
activator oltipraz inhibited the aflatoxin bioactivation, whereas administration of a 
sustained (once daily) low-dose (125 mg) of oltipraz increased the aflatoxin metabolism 
through the mercapturic acid pathway (69). This suggests that intermittent dosing might 
be more appropriate during concurrent therapy to avoid potential interference with the 
efficacy of the therapeutic agent, whereas sustained dosing might be more appropriate 
where the continuous removal of a toxic agent (e.g., ROS) is essential, such as in certain 
genetic diseases. If a disease is caused by a vicious cycle of inflammation causing 
oxidative stress leading to further inflammation and ultimately cell death, breaking that 
vicious cycle early in the disease pathogenesis might lead to long-term efficacy, and may 
allow dosing with a very low (e.g. once a month) frequency (50). 

Presently, Clinicaltrials.gov shows approximately 100 clinical trials with NRF2 
activators, which include pure compounds, complex plant extracts, and dietary 
supplements. The pentacyclic cyanoenones are particularly promising due to their high 
potency and efficacy (47). Indeed, several large clinical trials with bardoxolone methyl 
have been conducted. A Phase 3 randomized clinical trial in patients with advanced renal 
disease (stage 4 chronic kidney disease and type 2 diabetes mellitus) was terminated early 
because of observed increase in heart failure in the bardoxolone methyl group, which was 
associated with fluid retention (70). A subsequent study identified elevated baseline B-
type natriuretic peptide and previous hospitalization for heart failure as predictors of heart 
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failure (71). Exclusion of patients with these risk factors has allowed the design of a new 
Phase 3 clinical trial with bardoxolone methyl in patients with Alport syndrome (72); this 
study is currently active. Moreover, two NRF2 activators, DMF (BG-12, Tecfidera®) and 
RTA-408 (omaveloxolone, SKYCLARYS®), are now in clinical practice. In 2013, DMF 
was licenced as the first oral first-line therapy for relapsing-remitting multiple sclerosis 
(73). DMF is also used for the treatment of moderate-to-severe plaque psoriasis (74). In 
February 2023, RTA-408 was licenced as the first and only drug for patients with 
Friedreich’s ataxia based on clinical trials addressing the safety and efficacy data of this 
compound (75-77). 

NRF2 in cancer 

Given its broadly cytoprotective role, it is not surprising that NRF2 is often 
hyperactive in cancer and is a significant contributor to the hallmarks of cancer (78), 
including redox (79) and metabolic (80) adaptation, as well as resistance to chemo-, radio- 
and immunotherapy (81). Notably, the hyperactivation of NRF2 in cancer cells, together 
with transcription factor CCAAT Enhancer Binding Protein Beta (CEBPB), generates 
enhancers at gene loci that are not regulated by transiently activated NRF2 under 
physiological conditions (82). The activation of NRF2 is primarily used by cancer cells 
to combat the oxidative and metabolic stress that they would otherwise experience within 
their unfavourable growth environment. However, the persistent NRF2 activation causes 
metabolic imbalances, particularly within the pentose phosphate pathway and the cysteine 
and glutamate pools. This understanding has led to the proposal of strategies for 
exploiting these metabolic imbalances, including the use of small-molecule inhibitors of 
glutaminase (GLS) (83) or glucose 6-phosphate dehydrogenase (G6PD) (84). Currently, 
a Phase 1 clinical trial with the glutaminase inhibitor CB-839 is being conducted in 
advanced non-small-cell lung cancer patients, with a focus on those harbouring NFE2L2 
or KEAP1 mutations (85).  

The NRF2 hyperactivation in cancer has sparked an interest in developing NRF2 
inhibitors for cancer treatment and overcoming resistance to therapies. Multiple 
approaches have been used, including chemical library high-throughput screening (HTS), 
fragment-based nuclear magnetic resonance spectroscopy (NMR) screening, PROTACs, 
and molecular glues (86). Very recently, a chimeric molecule combining a CRBN ligand 
with an NRF2-binding portion was synthesized and shown to induce the degradation of 
the NRF2-MAFG heterodimer through the proteasome (87). In short, although there are 
no NRF2 inhibitors in clinical trials to date, some promising compounds are beginning to 
emerge. 

Pros and Cons of NRF2 activation as an adjunctive therapy 

Including NRF2 activators together with other pharmacological agents may have 
positive or negative effects. For example, NRF2 activation, by increasing the levels of 
drug-metabolizing enzymes, may alter the pharmacokinetics of concurrent therapies. This 
largely depends on the function of the NRF2 transcriptional targets. Thus, genetic NRF2 
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activation in mice (by hepatocyte-specific disruption of the Keap1 gene) leads to nuclear 
accumulation of NRF2, increased expression of multiple drug-metabolizing, including 
NQO1, GCLC, GPX2, and several members of the GST family, and resistance to the 
hepatotoxicity of acetaminophen (88). Similarly, pharmacological activation of NRF2 is 
protective against acetaminophen toxicity regardless of the mechanism of activation of 
NRF2. For example, this has been shown for withaferin A that activates NRF2 in a 
KEAP1-independent, phosphatase and tensin homolog (PTEN)-dependent manner (89), 
the C151 KEAP1-targeting electrophiles sulforaphane (90), dimethyl fumarate (91), and 
CDDO-Im (92), as well as the non-electrophilic KEAP1-NRF2 PPI inhibitor PRL-295 
(20). Pharmacological activation of NRF2 is also protective against the phototoxicity and 
photocarcinogenicity of azathioprine, a widely used anti-inflammatory and 
immunosuppressive agent, by accelerating the excretion of thio-dGTP, the ultimate 
metabolite of the azathioprine pro-drug (54, 93). However, whether NRF2 activation 
alters the therapeutic efficacy of these drugs remains to be established.  

The NRF2 transcriptional target NQO1 participates in the bioactivation of quinone-
containing anticancer drugs (94). Additionally, NQO1 catalyzes the obligatory 2-electron 
reduction of the quinone-containing HSP90 inhibitors forming hydroquinone metabolites, 
which are more potent HSP90 inhibitors than their quinone-containing parent 
compounds; this leads to increased cytotoxicity, but also limits this increased cytotoxicity 
to cancer cells with hyper-active NRF2/high NQO1 levels (95). In other cases, the 
ultimate outcome may depend not only on the NQO1 levels, but also on the overall 
reductive power of the cell. One example is β-lapachone, which is bioactivated by NQO1 
and thus is expected to target cells with high NQO1 levels. However, because its 
mechanism of action ultimately depends on the generation of reactive oxygen species, 
which are efficiently scavenged in cells with high NRF2 activity, such cells are in fact 
more resistant and not more sensitive to the toxicity of β-lapachone, despite their high 
NQO1 levels (96). 

Notably, some of the existing therapies have been suggested to exert their 
beneficial effects, at least in part, via NRF2. These include the 3-hydroxy-3-methyl-
glutaryl-coenzyme A reductase (HMG-CoA) reductase inhibitors statins, which have 
antioxidant and anti-inflammatory functions that are independent of their lipid-lowering 
effects, but dependent on NRF2 activation (97, 98). Another example is the aromatase 
inhibitor exemestane (99). Interestingly, a recent study has suggested that NRF2 
activation and the consequent induction of growth/differentiation factor 15 (GDF15) is 
responsible for some of the tissue-protective effects of certain cyclooxygenase (COX) 
inhibitors, such as the commonly used nonsteroidal anti-inflammatory drug (NSAID) 
indomethacin (100). 

Concluding remarks 

The extensive efforts of numerous investigators over the past three decades since 
the discovery of NRF2 and KEAP1 have provided an in-depth knowledge of the function 
and regulation of this essential cytoprotective system. A number of challenges still 
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remain, including how to achieve specificity, how to monitor in humans target 
engagement, pharmacodynamic responses and safety, which are the most appropriate 
disease indications (101). These will undoubtedly be the subjects of future investigations. 
Nonetheless, it is extremely gratifying to witness the highly significant advances in drug 
development of NRF2 activators, culminating in the approval of DMF and RTA-408 for 
clinical use. 
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Kratak sadržaj 
Nuklearni faktor 2 povezan sa nuklearnim faktorom eritroidom 2 (NRF2, koga kodira 

NFE2L2) je inducibilni transkripcioni faktor koji reguliše ekspresiju široke mreže gena koji 
kodiraju proteine sa citoprotektivnim funkcijama. NRF2 takođe ima i ulogu u održavanju 
mitohondrijske i proteinske homeostaze, a njegova aktivacija omogućava adaptaciju na različite 
vrste ćelijskog stresa. NRF2 je regulisan pre svega na nivou stabilnosti proteina pomoću tri glavna 
sistema ubikvitin ligaze, pri čemu je najbolje proučena regulacija putem proteina KEAP1, 
supstratnog adaptera za Cul3/Rbx1-zavisnu ubikvitin ligazu. KEAP1 je multifunkcionalni protein 
koji, pored toga što je supstratni adapter, predstavlja i senzor za elektrofile i oksidante. 
Farmakološka inaktivacija proteina KEAP1 ima zaštitni efekat kod životinjskih modela 
korišćenih za ispitivanje oboljenja koja pogađaju ljude, te je stoga danas prepoznat kao ciljno 
mesto delovanja lekova, posebno kada je reč o hroničnim oboljenjima kod kojih su oksidativni 
stres i inflamacija u osnovi patogeneze. Razvijena su brojna jedinjenja usmerena na KEAP1, 
uključujući elektrofile koji se kovalentno vezuju za cisteinske senzore u KEAP1, neelektrofilne 
inhibitore protein-protein interakcija koji se vezuju za Kelch domen KEAP1, prekidajući njegovu 
interakciju sa NRF2, a nedavno i heterobifunkcionalne himere usmerene na proteolizu 
(PROTACs) koje podstiču proteazomsku razgradnju KEAP1. Razvoj lekova koji sadrže 
jedinjenja usmerena na KEAP1 doveo je do uvođenja dva jedinjenja, dimetil fumarata (BG-12, 
Tecfidera®) i RTA-408 (omaveloksolon, SKYCLARYS®), u kliničku praksu. Dimetil fumarat je 
2013. odobren kao prvi oralni agens u prvoj liniji lečenja relapsno-remitentne multiple skleroze, 
a koristi se i u terapiji umerene do jake plak psorijaze. U februaru 2023. godine, američka Uprava 
za hranu i lekove (FDA) odobrila je omaveloksolon kao prvi i jedini lek namenjen pacijentima 
obolelim od Fridrajhove ataksije. 
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