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Abstract 
Lipoprotein lipase (LPL) is a glycoprotein that is produced and secreted into the interstitial 

space in various tissues, including the cardiac muscle, adipose tissue, macrophages, and skeletal 
muscle. LPL activity could be affected by genetic alterations which result in changes in lipid 
metabolism. This review article only focuses on reporting the recent studies which mainly explain 
the role of the LPL gene variants in metabolic syndrome and cardiovascular diseases. There are 
over 100 LPL gene variants, but this review article reported rs1801177, rs118204069, 
rs118204057, rs118204060, rs118204068, rs268, and rs328 as the most common in metabolic 
syndrome patients. In cardiovascular diseases, LPL variants rs1801177, rs268 and rs328 were the 
most prevalent. Therefore, it is suggested that further studies should be conducted to identify 
the LPL gene variants in other cardiovascular diseases, including cardiac arrhythmia. This review 
article concludes that LPL deficiency and dysfunction are associated with many diseases, such as 
obesity, insulin resistance, diabetes, chylomicronemia, atherosclerosis, myocardial infarction, 
coronary artery disease, and stroke. 
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Introduction 
In 1929, Macheboeuf identified the lipoprotein as a highly lipid-rich formation 

that is easily soluble in water (1), whereas the human Lipoprotein Lipase (LPL) gene 
was isolated in 1970 (2). LPL, designated with the enzyme commission (EC) number 
EC 3.1.1.34, is a crucial extracellular enzyme in the metabolism of lipoproteins. It 
plays a significant role in the maturation of various classes of lipoprotein particles (3). 
LPL belongs to the mammalian lipase family including hepatic lipase, endothelial 
lipase, pancreatic lipase, and gastric lipase (4, 5). LPL is secreted from glycoprotein 
with 55 kDa and synthesized from numerous cell types, including muscle cells, 
adipocytes, and macrophages (6). The LPL protein plays a crucial role in lipid 
metabolism as a multifunctional glycoprotein enzyme. Following secretion, LPL 
attaches to the endothelial surface, facilitating the hydrolysis of triglycerides (TG) in 
circulating lipoproteins. This process involves the crucial step of eliminating 
lipoproteins, including those of endogenous origin, such as very-low density 
lipoproteins (VLDL), and exogenous sources like chylomicrons provided free fatty 
acids (FFAs) and glycerol for tissue use (7, 8). Another study demonstrated that LPL 
functions as a cleansing factor by efficiently hydrolyzing TG. LPL affects the serum 
concentrations of TG and the production of lipoprotein particles, which are processed 
by hepatic lipase. A recent study has investigated how LPL assists as the ligand for 
the protein which is associated with the low-density lipoprotein receptor (LDLR) and 
influences hepatic secretion and VLDL cholesterol (VLDL-C) and low-density 
lipoprotein cholesterol (LDL-C) capture (9). Moreover, the retention of VLDL and 
LDL particles by the subendothelial matrix of the arterial wall is increased by LPL, 
which promotes the transformation of these lipoproteins into more atherogenic forms 
(10). LPL activity could be affected by genetic modifications which result in changes 
in lipid metabolism: for example, an extended half-life of LDL-C, reduced production 
of high-density lipoprotein (HDL), and reduced hydrolysis of chylomicrons and 
VLDL-C (11, 12). Moreover, Augustus et al. (13) investigated various physiological 
roles of LPL using a mouse model. Firstly, they identified cardiac LPL as a crucial 
modulator of plasma TG levels. Secondly, the decreased uptake of lipoprotein-derived 
fatty acids led to reduced expression of genes involved in fatty acid oxidation. Thirdly, 
there was an elevation in cardiac glucose uptake without altering overall glucose 
homeostasis in the body. Fourthly, remarkably, the insulin-signaling pathway 
underwent changes, with a reduction in insulin receptor substrate 1 (IRS-1) expression 
and an increase in insulin receptor substrate 2 (IRS-2) expression. In summary, the 
authors reported, for the first time, that mice with a tissue-specific deletion of cardiac 
LPL demonstrated the importance of cardiac LPL in regulating plasma TG levels and 
clearing postprandial lipoproteins. The products of lipolysis generated by LPL 
influenced PPAR actions, and LPL activity played a role in metabolic switching 
between fatty acid uptake and glucose utilization. Moreover, the authors generated 
mice with acute depletion of LPL in the heart, resulting in similar changes in cardiac 
gene expression, heart function, and plasma lipids as observed with prenatal loss of 
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this enzyme in the heart. This confirmed the impact of LPL loss on cardiac function. 
The study indicated that the loss of this enzyme is not the primary cause of the 
metabolic and functional alterations seen with chronic LPL loss during development 
and in prenatal periods. Furthermore, it emphasized the importance of FFA in the adult 
heart, suggesting that interventions inhibiting the heart's ability to utilize FFA could 
have adverse effects. Acute loss of LPL could be induced by infection, and previous 
studies have reported reduced cardiac LPL activity in conditions such as diabetes and 
starvation. The authors speculated that changes in LPL actions might contribute to 
acute alterations in cardiac function (14). Atherosclerotic arteries were found to have 
higher LPL activity compared to normal arteries (15, 16). Considering the genetic, 
clinical, and biological significance, several investigators have noted the association 
of the rs328 variant with blood pressure and hypertension (17-19). 

The LPL gene is located on the short arm of chromosome 8 and region 21.3 
(8p21.3) that comprises 9 introns and 10 exons, encoding a protein consisting of 475 
amino acids (20, 21). In 1960, Havel and Gordon reported the first cases of LPL 
deficiency in idiopathic hyperlipemia patients (22). Gaudet et al. (23) further 
highlighted that LPL deficiency is a rare inherited disease associated with severe 
hypertriglyceridemia, chylomicronemia, and the increased risk of recurrent 
pancreatitis, among other potential complications. Subsequent studies have identified 
various alteration in the LPL gene that are implicated in diverse metabolic disorders 
and cardiovascular conditions. Approximately 100 LPL gene variants have been 
documented, including rs1801177, rs118204069, rs118204057, rs118204060, 
rs118204068, rs268, and rs328. For instance, rs118204057 involves a G-to-A 
transition at nucleotide 818 in exon 5 (c.562G>A), resulting in a gly188-to-glu 
(p.G188E) substitution in the mature protein, and is associated with familial 
chylomicronemia syndrome characterized by markedly elevated triglyceride levels. 
Similarly, rs118204060, a C-to-T transition at nucleotide 875 in exon 5 (c.619C>T), 
leads to an amino acid substitution of leucine for proline-207 (p.P207L), also linked 
to familial chylomicronemia syndrome. Another variant, rs118204068, involves a G-
to-A transition in exon 6 (c.749G>A), causing a substitution of asparagine for aspartic 
acid at residue 250 (p.D250N), and serves as the basis for familial chylomicronemia 
and hypertriglyceridemia cases. Additionally, rs268, a nucleotide substitution in exon 
6 (c.872A>G), results in an asn291-to-ser substitution (p.N291S) associated with an 
increased risk of hypertriglyceridemia and cardiovascular diseases (CVDs). The 
rs118204069 variant, a T-to-C transition in exon 3 (c.257T>C), leads to a trp86-to-
arg substitution (p.W86R), contributing to LPL deficiency and familial 
chylomicronemia syndrome. Finally, rs328 involves a C→G transversion at 
nucleotide 1595 within exon 9 (c.1339C>T). This alteration transforms the serine 447 
codon (TCA) into a premature termination codon (TGA) (p.Ser447X), resulting in the 
generation of a truncated enzyme lacking the two carboxyl-terminal amino acids (Ser–
Gly). The c.1339C>T variation is a common polymorphism with no functional 
significance, and it is not associated with variations in lipid metabolism risk. Studies 
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reported these mutations were common LPL mutations in metabolic syndrome (MetS) 
patients. 

Multiple restriction fragment length polymorphisms (RFLPs) have been 
detected within the LPL gene, including variants associated with BamHI, PvuII, 
HindIII, BstNI, BstI, BglII, and XbaI. Among these, the polymorphisms characterized 
by the HindIII and PvuII RFLP sites (located on introns 8 and 6 of the LPL gene, 
respectively) are the most prevalent and could be linked to significant modifications 
in plasma lipid levels. The HindIII polymorphism results from the occurrence or 
absence of a T→G transition at position +495 in intron 8 of the LPL gene, and is 
among the most prevalent polymorphisms. The PvuII polymorphism results from a 
C⇒T transition at the restriction site within intron 6 of the LPL gene, positioned 1.57 
kb from the splice acceptor (SA) site. The region encompassing the PvuII site shares 
its homology with the splicing site, resembling the consensus sequence essential for 
3′-splicing and lariat structure formation. This suggests that the C497→T (CAG CTG 
⇒ TAG CTG) alteration may disrupt the accurate splicing of messenger RNA 
(mRNA) (24). In addition, these LPL variants, including rs1801177, rs268, 
rs1801177, and rs328, were also reported in patients affected with cardiovascular 
disorders. Therefore, this review article focuses exclusively on summarizing recent 
studies that primarily elucidate the role of these LPL gene mutations in MetS and 
CVDs, as explained in Figure 1 and Table I. 

  

Figure 1.  Common variants within the exonic region of the LPL gene resulting in 
protein substitutions, ultimately contributing to metabolic and 
cardiovascular disorders 

Slika 1.   Uobičajene varijante unutar egzonskog regiona LPL gena koje rezultiraju 
supstitucijama proteina, što na kraju doprinosi metaboličkim i 
kardiovaskularnim poremećajima 
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Table I  Role of LPL gene variants in metabolic and cardiovascular disorders 

Tabela I  Uloga varijanti LPL gena u metaboličkim i kardiovaskularnim poremećajima 
 

LPL 
Variants 

Exon/ 
Intron 

Nucleotide 
Change 

Amino Acid 
Change 

Mutation 
Type 

Clinical 
Significance Role of LPL variants in disorders 

rs1801177 Exon 2 c.106G>A p.Asp9Asn  Missense Benign familial hypertriglyceridemia, 
familial chylomicronemia, 
hypertriglyceridemia, 
atherosclerosis, coronary artery 
disease, 

rs118204069 Exon 3 c.257T>C p.Trp86Arg  Missense Pathogenic hypertriglyceridemia 
rs118204057 Exon 5 c.562G>A p.Gly188Glu  Missense Pathogenic familial hypertriglyceridemia, 

familial chylomicronemia, 
hypertriglyceridemia 

rs118204060 Exon 5 c.619C>T p.Pro207Leu  Missense Pathogenic hypertriglyceridemia 
rs118204068 Exon 6 c.749G>A p.Asp250Asn  Missense Pathogenic hypertriglyceridemia 
rs268 Exon 6 c.872A>G p.Asn291Ser  Missense Benign familial hypertriglyceridemia, 

familial chylomicronemia, 
hypertriglyceridemia, metabolic 
syndrome, atherosclerosis, 
coronary artery disease, 

rs328 Exon 9 c.1339C>T p.Ser447X  Nonsense Benign dyslipidemia, hypertension, 
atherosclerosis, obesity, type 2 
diabetes, hypertriglyceridemia, 
coronary artery disease, 
atherosclerosis 

rs316 Exon 8 c.1164C>A p.Thr361 Silent Synonymous atherosclerosis 
Pvull Intron 6 IVS6+1595C>T No change NA NA myocardial infarction, 

atherosclerosis 
HindIII Intron 8 IVS6+481T>G No change NA NA type 2 diabetes, atherosclerosis, 

myocardial infarction, coronary 
artery disease, hypertension 

NA: Not applicable 

 

Methods 

Literature survey and selection criteria 

Google Scholar, Science Direct, and PubMed were used to review the literature. 
Numerous keywords were used for searching the literature, such as lipoprotein lipase, 
MetS, CVDs, and LPL variants. The language for the review of clinical studies was set 
to English. This review article only focuses on reporting the recent studies which mainly 
explained the pathophysiological aspects of the LPL gene variants in MetS and CVDs. 
The time frame was not limited, even though more recent studies were preferred. 

Lipoprotein lipase (LPL) role in metabolic disorders  

MetS is a combination of various conditions, such as elevated blood glucose, 
hypertension, increased serum TG, reduced serum HDL-C, and central obesity. The 
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presence of MetS is linked to an increased risk of developing type 2 diabetes (T2D) and 
CVD. MetS has been defined by different organizations, including the International 
Diabetes Federation, World Health Organization, National Cholesterol Education 
Programme Adult Treatment Panel III, American Association of Clinical 
Endocrinologists, and the European Group for the Study of Insulin Resistance (25, 26). 
LPL is centrally involved in the metabolism of both VLDL and HDL. Various diseases, 
such as obesity, atherosclerosis, dyslipidemia, insulin resistance (IR), diabetes, 
chylomicronemia, and Alzheimer’s disease, have been associated with LPL dysfunction 
or deficiency (27). Moreover, the most prevalent variants in the LPL gene include 
rs118204057, rs1801177, and rs268.  

Role of LPL variants in familial chylomicronemia  

Familial LPL deficiency is recognized as the most prevalent form of familial 
chylomicronemia syndrome, formerly referred to as type 1 hyperlipoproteinemia 
(OMIM# 609708). It follows an autosomal recessive inheritance pattern and is 
predominantly observed in children, with an approximate prevalence of one in 1,000,000 
in the general population of the US (28). Familial LPL deficiency is characterized by 
severe hypertriglyceridemia, leading to recurrent acute pancreatitis, hepatosplenomegaly, 
episodes of abdominal pain, and eruptive cutaneous xanthomata. The impaired clearance 
of chylomicrons from the plasma results in the accumulation of TG in plasma, with 
concentrations exceeding 111.1 mmol/L in untreated states, giving it a milky appearance. 
The condition is identified through biallelic pathogenic variants in LPL via molecular 
genetic testing and is caused by homozygous pathogenic LPL variants (28). Familial 
chylomicronemia is associated with homozygous mutations, while the heterozygous 
mutation is significantly prevalent in the general population, ranging from 3-7%. 
Heterozygous mutations result in up to a 50% reduction in LPL activity, leading to 
elevated TG levels and reduced HDL-C levels. These lipid profile alterations increase the 
susceptibility to cardiovascular disease (29). The occurrence of homozygous LPL 
deficiency is approximately 1 per million individuals, and its primary functions involve 
the hydrolysis of TG and the peripheral uptake of FFA. Molecular characteristics of this 
condition encompass significantly reduced or completely absent LPL enzyme activity. 
The proportion of monogenic variants contributing to this condition is estimated to be 
95% (30, 31). Moreover, mutations in the LPL gene result in partial enzyme deficiency, 
leading to elevated TG levels which form the basis of familial chylomicronemia, 
characterized by TG levels ranging from 16.7 mmol/L to 44.4 mmol/L, increases in 
VLDL-C, and decreased levels of LDL-C and HDL-C, manifesting as pure 
hypertriglyceridemia, with TC levels below 13 mmol/L. Various LPL variants involving 
amino acid replacements at specific positions of the LPL gene have been identified, such 
as rs1801177, rs268, and rs118204057 (32). Similarly, Pingitore et al. (33) suggested that 
two newly identified mutations lead to type 1 hyperlipoproteinemia attributed to LPL 
gene mutations, resulting in a decrease or absence of LPL secretion, along with a loss of 
LPL enzymatic activity. Additionally, a mutation in the Apolipoprotein C-II (ApoCII) 
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gene diminishes the enzymatic activity of LPL, an essential activator of LPL. 
Interestingly, mutations like R72T in the Apolipoprotein C-II gene result in severe 
hypertriglyceridemia and recurrent pancreatitis (34).  

Role of LPL variants in obesity 

Schwartz et al. (35) characterized and defined obesity as an excess of body fat mass. 
The study by Nuermaimalti et al. (36) illustrated adipogenesis as the process of lipid 
accumulation and adipocyte differentiation, with the expression of LPL messenger 
ribonucleic acid (mRNA) often considered an early indicator of adipocyte differentiation. 
Similarly, Kersten (37) demonstrated that, during adipogenesis, transcription of the LPL 
gene is stimulated by fatty acids, the adipogenic transcription factor peroxisome 
proliferator-activated receptor-gamma (PPARγ), and other PPARγ agonists in 
differentiated adipocytes. Additionally, Wang et al. (38) illustrated that insulin exerts a 
significant influence on LPL activity in adipose tissues during adipocyte differentiation 
by enhancing LPL gene transcription. Furthermore, in mature adipocytes, insulin not only 
elevates the level of LPL mRNA, but also regulates LPL activity through both 
posttranscriptional and posttranslational mechanisms (38). The LPL variants may 
influence the concentrations of plasma lipids. In children with uncomplicated obesity, 
body mass index (BMI) and plasma lipoproteins could potentially impact the distribution 
of subcutaneous fats (39). Likewise, Huang et al. (40) proposed that central obesity and 
the levels of serum lipids could be influenced by the LPL gene rs328 variants. This 
highlights the importance of reducing waist circumference to enhance serum lipids, 
particularly in individuals with central obesity, especially those with the rs328 genotype. 
Numerous studies on obesity in both humans and rodents have indicated increased LPL 
activity in adipose tissue (27). Similarly, obese individuals exhibit higher adipose tissue 
LPL activity per fat cell compared to lean control subjects (41).  

Role of LPL variants in Type 2 Diabetes 

LPL activity is frequently diminished in T2D, leading to a reduction in HDL-C 
levels and an elevation in serum TG levels (42-44). Furthermore, numerous studies have 
demonstrated the association between genetic variations in LPL and lipid metabolism in 
individuals with T2D (45-47). Ma et al. (46) documented a correlation between reduced 
levels of HDL cholesterol and elevated plasma TG levels, along with the presence of the 
H+ allele (risk allele) of the LPL HindIII polymorphism in Chinese individuals with 
early-onset T2D. Additional investigations have also indicated a connection between T2D 
complications and LPL polymorphisms (48-52). Additionally, Ng et al. (51) uncovered 
an association between rs328 and nephropathy in T2D patients. Moreover, in 2007 Radha 
et al. (53) demonstrated that polymorphisms in the promoter region, including G53C of 
the LPL gene, confer protection against T2D. Likewise, Cho et al.'s (54) study concluded 
that the LPL gene product, which regulates lipid levels in the blood, may be a significant 
genetic factor influencing the onset of T2D in the Korean population. LPL activity in both 
the skeletal muscle and adipose tissue is insulin-dependent and varies in diabetes mellitus 
based on ambient insulin levels and insulin sensitivity (55). Taskinen et al. (55) indicated 
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that modifications in lipoproteins could influence LPL activity in individuals with 
diabetes. These modifications encompass low HDL and low LPL activity in conditions 
of insulin deficiency, high TG and high VLDLs, normal or low VLDLs and increased 
HDLs in chronically insulin-treated patients with elevated LPL activity, and low HDLs 
in untreated T2D patients. In white adipose tissue, heightened LPL activity observed in 
obese and T2D individuals shares a common characteristic – hypertriglyceridemia, which 
is positively linked to adverse lipid accumulation in tissues (56, 57). Insulin regulates the 
production and expression of LPL in adipocytes and in the skeletal muscle (58). The 
levels of pre-heparin LPL decrease in tandem with the worsening of MetS, exhibiting a 
negative correlation with TG, fasting blood glucose, body weight, and IR, while 
positively correlating with HDL-C (58). Moreover, individuals with T2D exhibit lower 
circulating preheparin LPL mass and reduced LPL production compared to their healthy 
counterparts, along with an inverse correlation between LPL and glycated hemoglobin in 
T2D (58). 

Role of LPL variants in Metabolic Syndrome 

Genetic studies have identified numerous variants within the LPL gene, some of 
which confer protective effects, while others have deleterious consequences. Heparin 
stimulates the activity of lipoprotein lipase (LPL), leading to increased plasma lipolytic 
activity and higher levels of free fatty acids in the blood. Assessing post-heparin 
lipoprotein lipase activities helps identify underlying disorders related to triglyceride and 
HDL-cholesterol metabolism. In one study, carriers of the rs328 variant exhibit elevated 
levels of post-heparin LPL activity and increased lipolytic activity. The presence of the 
rs328 variant is associated with small increases in HDL-C levels, low levels of TG, and 
a moderate reduction in cardiovascular risk (58). Additionally, carriers of this variant, as 
reported by Groenemeijer et al. (59), show increased blood glucose and TG levels 
compared to non-carriers. These findings suggest that the benefits of this mutation may 
be limited in individuals of normal weight under the assessed conditions (59). Moreover, 
Daoud et al. (60) determined that distinct genotype frequencies existed between the 
control and patient groups, although no statistically significant differences were identified 
between these groups. However, the authors did observe notable variations in plasma 
levels of TG, LDL-C, TC, and HDL-C in association with the LPL genotype. This 
observation suggests a correlation between the polymorphisms and lipid profiles in 
patients with CAD. The interplay of environmental and genetic factors may contribute to 
the complexity of CAD, potentially influencing the disease onset. Similarly, Goodarzi et 
al. (61) demonstrated that haplotype structure of the 3' end of the LPL gene was analyzed 
by genotyping several LPL 3' end single nucleotide polymorphisms (SNPs) in the 
Mexican American population. Associations between polymorphisms in this region, 
notably HindIII, and surrogate indicators of insulin resistance and atherosclerosis were 
investigated. HindIII variant is associated with dyslipidemia, hypertension, 
atherosclerosis, and obesity. Additionally, the authors assessed insulin sensitivity in the 
Mexican American population, finding a direct correlation with variations in the LPL 



46 
 
 

gene through a haplotype-based approach. The authors recommended further 
investigations in the Mexican American population to delve into the connection between 
the LPL gene and components of the insulin syndrome. Similarly, Barg (62) elucidated 
the central role of LPL in the development of MetS and dyslipidemia. The polymorphisms 
in the LPL gene have been implicated in disturbances of lipid metabolism and the 
pathogenesis of CAD. Carriers of the X allele of Ser447X polymorphism were associated 
with a reduced risk of CAD, lower TG levels, and elevated levels of HDL-C. Common 
LPL mutations such as rs1801177, rs118204069, rs118204057, rs118204060, 
rs118204068, rs268, and rs328 were identified in patients with hypertriglyceridemia. LPL 
plays a significant role in various aspects of normal metabolism, including body weight 
regulation, atherosclerosis, insulin action, and energy balance. Numerous physiological 
factors and daily conditions, such as fasting and exercise, intricately regulate LPL 
activity. Moreover, various diseases can impact human metabolism and LPL function. 
Obesity, osteoporosis, T2D, dyslipidemia, and MetS stand out as prevalent metabolic 
disorders (63-65). Consequently, MetS is a heterogeneous entity with various 
synonymous terms, including the Reaven syndrome, plurimetabolic syndrome, 
atherothrombogenic syndrome, and syndrome X (66-68). Two common LPL gene 
variants, rs268 and rs328, are associated with MetS due to their impact on low HDL-C 
and high TG (69). Brunzell et al. (70) demonstrated that individuals with homozygous 
LPL deficiency, recognized as familial chylomicron syndrome, exhibit severe 
hypertriglyceridemia, elevated chylomicron levels, and recurrent pancreatitis. However, 
they did not observe any association with an elevated risk of CAD, as large circulating 
chylomicrons were incapable of infiltrating the arterial wall (71, 72). Nordestgaard (73) 
demonstrated that individuals with heterozygous LPL deficiency exhibit impaired 
lipolysis, resulting in the accumulation of circulating chylomicron remnants and 
intermediate-density lipoproteins rich in both cholesterol and TG. However, they did not 
establish a confirmed link to an increased risk of CAD. Conversely, in a cross-sectional 
study involving CAD case-control studies, Khera et al. (74) reported that gene sequencing 
identified deleterious alterations in the LPL gene in 188 out of 46,891 individuals (0.4%). 
These mutations were significantly associated with higher levels of TG and an increased 
presence of CAD. As per Cagatay et al.'s research (75), the Pvull polymorphism has been 
associated with reduced levels of HDL-C and elevated TG levels. A meta-analysis has 
indicated that this polymorphism is correlated with a decreased risk of experiencing a 
heart attack or myocardial infarction (76). Consequently, it demonstrates a protective 
effect against cerebrovascular accidents (76). 

Role of LPL variants in Atherosclerosis 

Increased atherosclerosis and early atherogenic processes are associated with the 
expression of LPL found on macrophages and other cells within vascular walls. 
Moreover, overexpression of LPL is correlated with IR and hypertension due to 
heightened inflammation, vascular remodeling, oxidative stress, sympathetic nervous 
system activation, vasoconstriction, and sodium retention (77-79). In the Central 
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European Caucasian population, dyslipidemia in subjects with MetS has indicated that 
the S1 allele of apolipoprotein C-III (APOC3) SstI polymorphism arising from a 
substitution of C to G at position 3238 in the 3´ untranslated region of exon 4 in the 
APOC3 gene, situated on the long arm of chromosome 11, along with the H-allele of LPL 
HindIII polymorphism, may have a marginal impact on apoB levels (80). The increased 
risk of premature arteriosclerosis is connected to the accumulation of triglyceride-rich 
lipoproteins as an independent factor. Among hypertriglyceridemia patients, 
approximately 20% carry common mutations in the LPL gene, such as rs1801177, 
rs118204069, rs118204057, rs118204060, rs118204068, rs268, and rs328, which are 
associated with hypertriglyceridemia. It is advisable to conduct genotyping for these LPL 
gene mutations, especially in individuals at a high risk of premature arteriosclerosis. 
Additionally, a significant number of individuals carry silent mutations, including Thr361 
(one novel mutation was observed: C1338A in exon 8 of the LPL gene, which is a silent 
mutation at Thr361), and common mutations, such as rs328, which are associated with 
less favorable lipid profiles (81). 

Role of LPL variants in cardiovascular diseases  

Elevated levels of TG are a well-established factor for CVD. LPL plays a crucial 
role in the hydrolysis of TG, ensuring an adequate supply of fatty acids, primarily to 
adipose tissue. When there is a deficiency in LPL or an imbalance in tissue-specific LPL 
activities, this leads to hypertriglyceridemia. Various regulators influence LPL, including 
angiopoietin-like (ANGPTL) proteins (such as ANGPTL8, ANGPTL4, ANGPTL3) and 
certain apolipoproteins (including apolipoprotein A5, apolipoprotein C3, and 
apolipoprotein C2). These regulators collaboratively modulate LPL activity and the 
utilization of TG (57, 58, 82). 

In the Mexican population, Muñoz-Barrios et al. (83) demonstrated an association 
between the HindIII polymorphism and hypertension. Likewise, Tanguturi et al. (84) 
reported that individuals with a homozygous genotype for the common allele (H+/H+) of 
the LPL gene are at an increased risk of experiencing their first myocardial infarction. In 
contrast, Imeni et al. (85) found no statistically significant association between CAD and 
the genotypic distribution of the HindIII polymorphism. Additionally, Muñoz-Barrio's 
study indicated an elevated risk of stroke in individuals with LPL gene variations, 
particularly in the HindIII polymorphism (83). 

Similarly, He et al. (86) explored a reduced risk of stroke in individuals with the 
HindIII polymorphism carrying the G allele, and this association was observed in both 
hemorrhagic and ischemic stroke patients. Likewise, in another study (87), an 
investigation into the association between the distribution of HindIII polymorphism 
genotypes and the risk of CAD revealed no statistically significant differences between 
patients with a history of CAD and healthy individuals in Iran. 

Likewise, Ma et al. (88) performed a meta-analysis, indicating an increased risk of 
CAD associated with the LPL rs1801177 polymorphism. However, the LPL HindIII and 
rs328 polymorphisms demonstrated a protective role against CAD. Additionally, the 
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authors did not identify any association between the LPL Pvull polymorphism, as well as 
rs268, and susceptibility to CAD. 

Similarly, Xie et al. (89) conducted a meta-analysis on LPL polymorphism and its 
association with the risk of CAD. The authors concluded that the risk of CAD was 
associated with the homozygous H+ H+ genotype and H+ allele genotypes of the LPL 
HindIII polymorphism. Additionally, the risk of CAD was significantly linked to the 
rs328 XX genotype. However, the risk of CAD was not associated with the Pvull 
polymorphism. Finally, the authors suggested that the LPL HindIII polymorphism could 
serve as a potential biomarker for CAD risk. 

Similarly, Spence et al. (90) elucidated that the predictor for the baseline carotid 
plaque area was significantly associated with the LPL rs1801177 genotype, and this 
association might be influenced by BMI. Furthermore, over a one-year period, plaque 
progression showed a strong correlation with the rs1801177 genotype. The authors 
propose that the rs1801177 genotype, as assessed by the progression of carotid plaque 
area, could be a determinant of atherosclerosis. 

Furthermore, Gagné et al. (91) highlighted the connection between genetic variation 
at the LPL locus and the influence of plasma lipids in modulating the risk of coronary 
heart disease (CHD). The authors concluded that the rs328 variant could potentially offer 
significant protection against elevated TG levels, premature CHD, and low HDL-C in the 
studied subjects. Similarly, Guan et al. (92) examined the association between LPL gene 
variants rs328, rs1801177, and rs268 polymorphisms and the development of CVDs in 
children with obesity. In summary, the authors concluded that rs1801177, rs268, and 
rs328 gene mutations might not be associated with CVD risk in children with obesity. 

Conclusion  
This review article concludes that LPL deficiency and dysfunction are associated 

with various disorders, such as obesity, IR, T2D, chylomicronemia, atherosclerosis, 
myocardial infarction, CAD, and stroke. There are around 100 LPL gene variants, but this 
review article reported that LPL polymorphisms such as rs1801177, rs118204069, 
rs118204057, rs118204060, rs118204068, rs268, and rs328 were the common variants 
present among metabolic syndrome patients. On the other hand, rs1801177, rs268, 
rs1801177, and rs328 polymorphisms were common in CAD affected patients. Therefore, 
it is suggested that further studies should be conducted to identify the LPL gene variants 
in other CVDs, including cardiac arrhythmia. 
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Kratak sadržaj 
Lipoproteinska lipaza (LPL) je glikoprotein koji se proizvodi i sekretuje u intersticijalni 

prostor različitih tkiva, uključujući srčani mišić, masno tkivo, makrofage i skeletne mišiće. 
Aktivnost LPL može biti pod uticajem genetskih modifikacija koje rezultiraju promenama u 
metabolizmu lipida. Ovaj revijski članak sadrži podatke o nedavnim studijama koje uglavnom 
objašnjavaju patofiziološke aspekte mutacije gena za LPL u metaboličkom sindromu i 
kardiovaskularnim bolestima. Zabeleženo je oko 100 mutacija gena za LPL, ali ovaj revijski 
članak prikazuje rs1801177, rs118204069, rs118204057, rs118204060, rs118204068, rs268 i 
rs328, koje su najčešći nosioci mutacije gena za LPL kod pacijenata sa metaboličkim sindromom. 
Kod kardiovaskularnih bolesti, varijante LPL rs1801177, rs268 and rs328 su najučestalije. 
Potrebne su buduće studije kako bi se ispitale mutacije gena za LPL u drugim kardiovaskularnim 
bolestima, uključujući srčanu aritmiju. Ovaj revijski članak zaključuje da su deficit i disfunkcija 
LPL povezane sa bolestima kao što su gojaznost, insulinska rezistencija, dijabetes, 
hilomikronemija, ateroskleroza, infarkt miokarda, koronarna arterijska bolest i moždani udar. 

 
Ključne reči:  lipoproteinska lipaza, metabolički sindrom, kardiovaskularne bolesti, 

patofiziologija, mutacija 
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