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Abstract

Genetic, genomic and proteomic analyses of cells, tissues and body fluids have generated
a wealth of precious information about the intricate mechanisms which underlie carcinogenesis
and metastasis. Lactoferrin, a multifunctional cationic glycoprotein, has attracted widespread
appreciation because of its characteristically novel properties for cancer chemoprevention. Tumor
microenvironment is a highly complicated and sophisticated ecosystem, significantly reshaped by
a wide variety of treatment regimes. Therefore, lactoferrin-mediated immunostimulatory role
reshapes tumor microenvironment and inhibits cancer progression. There is sufficient
experimental evidence related to immunostimulatory ability of lactoferrin in tumor
microenvironment. Different clinical trials have been conducted for the evaluation of clinical
efficacy of lactoferrin in different cancer patients. It is necessary to carefully interpret the clinical
evidence and identify the major gaps in our understanding related to the selection of group of
cancer patients likely to benefit the most from the combinatorial treatment regime comprised of
lactoferrin and chemotherapeutic drugs. Moreover, lack of efficacy should be analyzed by a team
of interdisciplinary researchers for a broader and comprehensive understanding of the
mechanisms underlying treatment failure.
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Introduction

The quest for biomolecules with remarkable biological activity has been ongoing
for a long time. Medicinal chemistry and interdisciplinary research have revolutionized
the field of drug discovery and we have witnessed the continuous upgrading of the list of
natural products that have splendid preclinical and clinical efficacy (1-4). The discovery
of lactoferrin has opened new horizons for the evaluation of its biological activities.
Lactoferrin is a multifunctional glycoprotein widely distributed in milk and colostrum, as
well as in other secretions, such as saliva and tears. It is released from neutrophils in
inflamed tissues. Lactoferrin has a direct antimicrobial role, as it limits the adhesion and
proliferation of microbes and/or kills them (5-8). The secretion of lactoferrin increases
dramatically in neurodegenerative diseases (9, 10) and inflammation, which leads to the
degranulation of neutrophils and activation of microglial cells. Lactoferrin efficiently
reduces pollen antigen-mediated allergic inflammation of the airways (11). Lactoferrin
has also been reported to demonstrate bactericidal effects (12-14).

In the era of precision oncology, the mechanistic understandings gathered from
different cancers have highlighted the fundamental role of intra-tumoral heterogeneity,
epithelial-to-mesenchymal transition (15-17), activation of oncogenic signaling cascades
and immune escape mechanisms (18). The identification of bioactive molecules with
extraordinary cancer chemopreventive effects has stirred research in multifaceted aspects
of molecular oncology (19-24). Significant developments have been made in expounding
the roles and functions of natural products in the pharmacological targeting of aberrantly
regulated protein networks (25-30).

Lactoferrin, also known as lactotransferrin, is a nutrient produced by epithelial cells
in mammalian species. Lactoferrin is an 80kDa single polypeptide chain containing 703
amino acids in one molecule, and it has a higher affinity to binding the ferric iron in the
body. Conversely, lactoferricin is a shorter peptide of 49 amino acids produced by the
breaking down of lactoferrin through pepsin digestion in the stomach.

There has always been a keen interest in searching for anticancer agents with
minimum off-target effects and remarkable clinical efficiency (31-34). Different reviews
have analyzed the role of lactoferrin in the inhibition of different cancers (35-38). In this
mini-review, we have presented an overview of lactoferrin-mediated targeting of
oncogenic pathways. We have browsed lactoferrin-mediated anticancer effects by using
different keywords. We used "lactoferrin®, "cancer", "metastasis”, and "mice". We have
also browsed clinicaltrials.gov for clinical trials related to lactoferrin in cancer
prevention.

Lactoferrin-mediated regulation of protein networks in cancer inhibition

In this section, we have provided a brief summary of lactoferrin-mediated targeting
of oncogenic proteins in different cancers. We have also provided a tabular form of
effective doses of lactoferrin in different cancer cell lines (Table I).
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Table | Doses of lactoferrin used in different cell culture studies

Tabela | Doze laktoferina kori§¢ene u razli¢itim ispitivanjima na ¢elijskim kulturama

Lactoferrin/derivative Cell line Dose

Head and neck squamous cell

Recombinant Lactoferrin carcinoma cells 250 uM ©9
Recombinant Lactoferrin Non-metastatic MDA-MB-231 109.46pg/ml “0
Recombinant Lactoferrin Metastatic MDA-MB-231 91.4ug/ml “0)
LfcinB9 SK-OV-3 60pg/ml 1
Lactoferrin Colon cancer cells 20mg/mL ¢3)
Lactoferrin Oral squamous cell carcinoma 50ug/ml “6)

25pg, 50ug, 100pug

Recombinant Lactoferrin Oral squamous cell carcinoma and 250pg @)

T47D, MCF-7, MDA-MB-231,

(48)
MDA-MB-468 10pg/ml

Lactoferrin

250 uM of recombinant lactoferrin inhibits the growth and proliferation of head and
neck squamous cell carcinoma cells. Oral lactoferrin stimulates the release of intestinal
IL-18 and potently enhances splenic production of NK cells and serum CD8+ cells.
Lactoferrin induces an increment in the number of circulating and splenic CD4+ and
CD8+ cells. The depletion of mature lymphocytes with anti-CD3+ antibody severely
impaired lactoferrin-mediated shrinkage of tumors (39).

Recombinant human lactoferrin demonstrates CCso of 109.46ug/ml on non-
metastatic and 91.4pg/ml on metastatic MDA-MB-231 cancer cells (40).

LfcinB9, a peptide derived from lactoferricin B, has been demonstrated to be
effective against ovarian cancer. LfcinB9 (60ug/ml) increases the generation of ROS in
SK-OV-3 cells. Intra-tumoral injections of LfcinB9 (60mg/kg) effectively impaired the
tumor growth in mice inoculated with SK-OV-3 cells. It is non-toxic even at the highest

tested concentrations of 640ug/ml. Hemolytic activity of LfcinB9 was very low in red
blood cells (41).

LfcinB induces ~80% cell death in SKBR3 and MDA-MB-231 cells at a dose of
100 and 200 pg/ml. Intratumorally injected LfcinB induces the apoptotic death of the
tumor cells, causing the shrinkage of the tumors (42).

Adenovirus carrying lactoferrin (Ad-hLF) inhibits the growth of cervical cancer
cells. Ad-hLF increases natural Kkiller cell activity and the number of CD4+ and CD8+ T
lymphocyte cells in the peripheral blood of mice inoculated with cervical cancer
cells (43). Ad-hLF has also been found to be effective against breast cancer (44, 45).

511



Lactoferrin (50pg/ml) works effectively with human neutrophil peptide-1(10ug/ml)
against oral squamous cell carcinoma (OSCC) cells (46). Human recombinant
lactoferrin (25ug, 50ug, 100pg and 250ug) has also been tested against OSCC cells (47).

IC30 dose for T47D and MCF-7 cells was 10ug/ml. However, at same dose,
lactoferrin induced apoptosis in MDA-MB-231 (45%) and MDA-MB-468 (40%)
cells (48).

Diabetes is more likely to increase the vulnerability of colon tumors in xenografted
mice. HT29 tumors developed at a fast rate under a high glucose environment. Tumors
formed by the colon cancer cells (HCT116 and HT29) in diabetic mice were found to be
markedly different from those in non-diabetic animal models. HKDC1 (Hexokinase
domain component 1) overexpression may contribute to carcinogenesis. However,
NT5DC3 (5'-Nucleotidase Domain Containing 3) suppresses cancer progression.
Lactoferrin upregulates the levels of m6A eraser genes and downregulates m6A writer
and reader genes under high glucose concentrations. Lactoferrin was used at a dosage of
250 mg-kg—1 body weight (b.w.) (as 3.1 uM-kg—1 b.w.). Collectively, lactoferrin
significantly reduced the levels of m6A modifications at 2309™ site of NT5DC3 (49).
Moreover, lactoferrin also inhibited DNA-methyltransferase-1 (DNMT)-mediated
epigenetic repression of NT5DC3. These findings are highly intriguing and suggest that
lactoferrin effectively inhibits colon cancer progression in a hyperglycemic environment.

In another exciting study, it was shown that lactoferrin interacted with NT5DC3
and activated its phosphorylation at Threonine-6 and Serine-11 sites. Lactoferrin
suppressed the cancer development from T2D to colon cancer by activating the
phosphorylation of NT5DC3 (50).

Pulmonary metastatic nodules were found to be remarkably enhanced in LF
knockout (Lf ) mice injected with B16-F10 melanoma cells. Myeloid-derived
suppressor cells (MDSCs) are pathologically activated monocytes and neutrophils with
strong immunosuppressive functions. There was a considerable increase in
polymorphonuclear MDSCs in LF knockout mice. The apoptotic death of MDSCs was
significantly reduced in cells derived from naive Lf’~ mice. However, the addition of LF
increases the apoptotic percentage of MDSCs from Lf’~ mice. LF promotes the
differentiation of MDSCs into DCs and macrophages. Lactoferrin deficiency facilitates a
pro-metastatic microenvironment in lung tissues, which is facilitated by PMN-MDSCs.
TLR9 (Toll-like receptor-9) is downregulated significantly in the lung tissues of tumor-
bearing Lf 7~ mice. TLR9 agonist not only inhibited the immunosuppressive activity of
PMN-MDSCs, but also suppressed pulmonary metastatic nodules in tumor-bearing Lf "/~
animal models (51). Lactoferrin was used as (200 mg/kg body-weight) in animal models.

Lactoferrin overexpression in 5-8F cells significantly suppressed tumor growth in
xenografted mice. However, tumor growth was found to be enhanced in mice inoculated
with lactoferrin- knockdown HONEL1 cells. PDK1 (Phosphoinositide dependent Protein
kinase-1) phosphorylates AKT at 308" threonine and increases AKT activity.
Resultantly, AKT phosphorylates SIN1 and enhances mTORC2 kinase activity, which
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leads to phosphorylation at serine residue-473 (AKT) by mTORC?2, thus catalyzing the
fullest activation of AKT. Lactoferrin not only inhibits c-Jun mediated transcriptional
activation of PDK1, but also reduces PDK1-mediated phosphorylation of AKT (52).

Lactoferrin inhibits the migration and invasion of colon cancer cells at 20mg/ml.
Vascular endothelial growth factor (VEGF)/VEGFR signaling contributes to the key
aspects of tumorigenesis. Lactoferrin was found to effectively downregulate the levels of
VEGFA, VEGFR2, p-PI3K, p-AKT and p-ERK1/2 in HCT8 and HT29 cancer cells (53).

Moreover, lactoferrin inhibited tumor xenografts in mice implanted with U87TMG
cells into the left caudate nucleus (54).

Recombinant adenovirus expressing human lactoferrin induced an increase in the
levels of Fas and Bax in cervical cancer cells. Furthermore, caspase-3 was activated, but the
levels of anti-apoptotic BCL-2 were noticed to be suppressed in cervical cancer cells (55).

Lactoferrin considerably reduced the levels of cyclin D1 and Rb phosphorylation
in nasopharyngeal carcinoma cells. p21 blocks CDK2-cyclin E and inhibits CDK2-
dependent phosphorylation of RB. The levels of p21 and p27 have been found to be
enhanced in lactoferrin-treated cancer cells. Extracellular signal-regulated kinase-1/2
(ERK1/2) are the downstream constituents of a phosphorelay pathway that conveys
mitogenic and growth signals. Lactoferrin also reduced phosphorylated ERK1/2 in
nasopharyngeal carcinoma cells (56). Overall, Lactoferrin interferes with NPC
proliferation through the induction of cell cycle arrest and modulation of MAPK signaling
cascade.

Recombinant lactoferrin and epirubicin inhibited tumor growth in mice bearing
solid Ehrlich carcinoma. Co-administration of recombinant lactoferrin and epirubicin
effectively enhanced the levels of activated JINKs and p53 in tumor tissues (57).

M860 is a mouse antihuman lactoferrin monoclonal antibody having the unique
ability to form a stable immunocomplex (IC) with lactoferrin. LTF-IC induced
repolarization of human TAMs to M1-like phenotype. It is well-known that CD163 and
CD206 are specifically expressed on M2 macrophages. Research has shown that LTF-IC
significantly suppressed CD163 and CD206 and caused the stimulation of M1 markers
CD86 in MDA-MB-231-TAMs (58). MDA-MB-231-TAMs expressed FcyRIla/CD32a
and FcyRI/CD64. LTF-IC exerted extraordinarily robust effects on TAMs by the
induction of cross-signaling between FcyRIla (CD32a) and lactoferrin receptor (TLR4,
CD14). Blockade of mAbs against CD32a almost completely impaired LTF-1C-mediated
secretion of TNFa by MDA-MB-231-TAMs. TAMs interacted with MDSCs and
regulatory T cells (Tregs) for the formation of an immunosuppressive microenvironment,
which played an important role in promoting the growth of tumors. Intraperitoneally
administered LTF-IC caused the inhibition of tumor formation in hCD32a-transgenic
mice implanted with B16 melanoma cells. LTF-IC considerably reduced the number of
CD4*Foxp3* Tregs and CD11b*Gr-1" MDSCs within B16 tumor tissues from hCD32a-
transgenic mice. Directly injected LTF-IC-pretreated viable hCD32a-TG-B16-TAMs
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into solid tumors led to a momentous reduction in the percentage of Tregs and MDSCs
in the tumor tissues (58).

Lactoferrin-mediated regulation of non-coding RNAs has also garnered scientific
interest. Lactoferrin has been shown to trigger the expression of miRNAS in prostate
cancer cells (59). However, these aspects have to be tested in detail, using experimental
mice inoculated with prostate cancer cells. Expression profiling of miRNASs in the tumor
tissues derived from prostate cancer cells will be helpful in the evaluation of anticancer
effects of lactoferrin.

There has been a significant increase in the number of macroscopic pulmonary
metastases in mice injected with miR-214 overexpressing 6-10B cells. miR-214 acts as an
oncogenic miRNA and directly targets lactoferrin. miR-214 promoted AKT signaling in
nasopharyngeal carcinoma cells. Therefore, lactoferrin inhibited tumor progression by the
inhibition of miR-214 and AKT signaling in nasopharyngeal carcinoma cells (60).

The available evidence suggests lactoferrin-mediated regulation of different non-
coding RNAs, but the information is limited and needs comprehensive validation in
animal model studies.

Clinical trials

Talactoferrin (TLF), a recombinant form of human lactoferrin, was well-tolerated.
No significant hematologic, hepatic, or renal toxicities were reported. Research has
provided important information about the clinical efficacy of Talactoferrin. Progressive
advanced or metastatic renal cell carcinoma patients were enrolled in the clinical trial for
evaluation of lactoferrin (Table II) (61).

After the transportation of talactoferrin into the small intestinal Peyer's patches, it
promotes the recruitment of circulating tumor antigen-loaded dendritic cells to GALT
(gut-associated lymphoid tissues) and promotes their maturation. These signals trigger
the induction of robust systemic innate and adaptive immune responses mediated by
Natural Killer cells, CD8" lymphocytes and NK-T cells.

Phase Il clinical trial was conducted by a combination of talactoferrin with
paclitaxel and carboplatin as a treatment regime of metastatic NSCLC. Combinatorial
treatment consisting of talactoferrin and carboplatin/paclitaxel demonstrated an increase
in response rates compared to paclitaxel and carboplatin alone (62). In view of the
clinically relevant evidence, clinicians initiated another correlative study to further
characterize and interpret the immunostimulatory mechanisms induced by talactoferrin in
patients suffering from metastatic NSCLC. However, the trials failed to generate
significant evidence to substantiate the efficacy of talactoferrin in increasing the
progression free survival and overall survival (63).

Furthermore, the promising results of phase Il trials also paved the way for two
randomized, phase Il trials, including a trial of single agent talactoferrin versus placebo
in patients with refractory/relapsed NSCLC, and a trial of carboplatin/
paclitaxel/talactoferrin versus carboplatin/paclitaxel alone as frontline therapy (64).
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However, the trials were unfortunately reported to be negative for progression free
survival, as well as overall survival.

In another clinical trial, talactoferrin was used as a monotherapy. There was no
evidence of grade 3 or grade 4 toxicities. Importantly, the immunological systems of
enrolled patients were found to be compromised, and thus least expected to generate
significant immunological responses. It was also noticed that heavily pretreated NSCLC
patients with a heavy disease burden also failed to generate effective immunological
responses (65). Importantly, immunological responses are inversely related to the number
of previous chemotherapy regimes. Two patients with the lowest number of prior
anticancer regimens remained in the trial the longest, and demonstrated an increase in the
number and functional activity of NK cells.

Table 11 Clinical trials of talactoferrin
Tabela Il Klini¢ka ispitivanja talaktoferina

Number

Selection Criteria of Patients Results

Progressive advanced or 44 adult 14-week progression-free survival rate of 59%.
metastatic renal cell carcinoma. patients PFS was 6.4 months.

Treatment failure of prior Median OS was 21.1 months (61).

systemic therapy.

Stage IIB/IV NSCLC having 742 patients  Clinical trial failed to show a statistically

treatment failure for two or more significant difference between talactoferrin alfa
prior regimens. and placebo (64).
Stage IV NSCLC patients 10 patients Increase in immunologic activity in 2 patients (65).

previously treated with multiple
chemotherapy regimens.

Stages I1IB to IV NSCLC having 100 patients Increase in Median OS by 65% in oral
treatment failure for one or two talactoferrin group (66).
prior regimens.

Progressive advanced or 36 patients 17 patients had stable disease (50% disease
metastatic patients. control rate).

Patients ineligible for standard Median PFS in 12 NSCLC patients (4.2 months)
chemotherapy. Median PFS in 7 RCC patients (7.3 months) (67).
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Concluding remarks

Lactoferrin-mediated anticancer and anti-metastatic effects have opened new
horizons for the evaluation of clinical efficacy. It is pertinent to mention that clinical trials
of lactoferrin give a unique perspective of translatability of lactoferrin as a promising
clinical drug. Therefore, detailed analysis of lactoferrin-mediated effects in cell culture
studies and tumor-bearing mice is compulsory. The highest concentrations of lactoferrins
are present in bovine and human milk. Moreover, bone marrow cells, secondary granules
of neutrophils, and the collecting tubules of kidneys also produce lactoferrin in the body.
Emerging evidence has illuminated how lactoferrin inhibited AKT/mTOR and
VEGF/VEGFR signaling for cancer inhibition.

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a highly
efficient anticancer agent. There is a need to analyze how lactoferrin works with TRAIL-
based therapeutics for durable cancer inhibition in animal model studies. How lactoferrin
modulates different non-coding RNAs is another mystery that needs to be resolved. The
identification of different long non-coding RNAs and circular RNAs likely to be regulated
by lactoferrin will further refine our understanding about the combinatorial use of tumor
suppressor non-coding RNAs and lactoferrin for cancer inhibition. Importantly,
lactoferrin-mediated activation of immunological responses is also significant for the
inhibition of cancer progression. Although researchers have started to explore the
mechanisms and pathways modulated by lactoferrin  for effective cancer
chemoprevention, we still have to answer many outstanding questions.
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Kratak sadrzaj

Geneticke, genomske i proteomske analize ¢elija, tkiva i telesnih tecnosti pruzile su obilje
dragocenih informacija o sloZzenim mehanizmima koji leze u osnovi karcinogeneze i metastaza.
Laktoferin, multifunkcionalni katjonski glikoprotein, predmet je velikog interesovanja zbog
svojih karakteristi¢no novih svojstava u hemioprevenciji karcinoma. Tumorsko mikrookruzenje
je veoma slozen 1 sofisticiran ekosistem, koji u znacajnoj meri mogu preoblikovati raznovrsni
rezimi le€enja. Stoga imunostimulativna uloga laktoferina preoblikuje tumorsko mikrookruzenje
i inhibira napredovanje kancera. Postoji dovoljno eksperimentalnih dokaza koji se odnose na
imunostimulativhu sposobnost laktoferina u tumorskom mikrookruZzenju. Brojna klinicka
ispitivanja su sprovedena radi evaluacije klinicke efikasnosti laktoferina kod razli¢itih pacijenata
obolelih od kancera. Neophodno je pazljivo tumaciti klinicke dokaze i identifikovati kljucne
praznine u nasim saznanjima vezanim za izbor grupe pacijenata obolelih od kancera za koje se
ocekuje da ¢e imati najvise koristi od kombinovanog rezima lecenja koji se sastoji od laktoferina
i hemioterapijskih lekova. Pored toga, trebalo bi da nedostatak efikasnosti analizira tim
interdisciplinarnih istrazivaéa, zarad §ireg i sveobuhvatnog razumevanja mehanizama koji leZe u
osnovi neuspeha u lecenju.

Kljuéne reci: kancer, laktoferin, metastaza, Klinicka ispitivanja, ¢elijski signalni proces
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