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Abstract 
Schizophrenia and other related disorders represent a major clinical challenge, with 

environmental and genetic factors contributing to their occurrence. Animal models are 
indispensable tools for understanding the complex neurobiological mechanisms underlying 
psychosis and for developing new therapeutic approaches. This review focuses on the animal 
models commonly used in schizophrenia research, especially those based on prenatal and 
postnatal environmental risk factors. Prenatal exposure to infections, such as bacterial 
lipopolysaccharides (LPS) and viral components such as poly I:C, activates immune responses 
that lead to long-lasting structural and functional changes in the brain, including hippocampal 
atrophy and cortical thinning. Postnatal factors such as early life stress, social isolation and drug 
abuse, particularly cannabis, are also being modelled to investigate their effects on brain 
development and the onset of psychosis. These models allow controlled manipulation of 
environmental challenges and provide insights into the aetiology and pathophysiology of the 
disease. However, the variability of experimental protocols and lack of female representation in 
many studies underscore the need for more robust and inclusive animal models. Ultimately, these 
models are crucial for a better understanding of schizophrenia and for testing potential therapeutic 
interventions. 
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Introduction 
With around half of the population meeting the diagnostic criteria for a psychiatric 

disorder at least once in their lifetime, improving mental health is of great importance (1). 
Psychiatric disorders place a significant burden on society, and due to increased average 
daily stress levels in modern society, anxiety and depressive disorders are particularly 
common (2). Although anxiety and depression are the most common and widely 
discussed, psychosis remains the greatest challenge to clinical practice. According to the 
Global Burden of Disease Study, schizophrenia alone accounts for 1.5% of the total 
morbidity caused by all diseases, measured in disability-adjusted life years (DALYs) 
worldwide in the 24-49 age group (3). 

It is well known that both genetic predisposition and environmental risk factors 
contribute to the onset of schizophrenia and affect individuals from conception to late 
adulthood. Twin studies have been instrumental in understanding the heritability of 
schizophrenia, a disorder that is shown to have a significant genetic component. 
Heritability refers to the proportion of variance in a population that can be attributed to 
genetic differences (4). According to a published meta-analysis of twin studies, the 
estimated heritability for schizophrenia is around 81% (5). This suggests that the risk of 
developing schizophrenia is mainly genetic and that the remaining proportion is 
influenced by environmental factors. Despite the strong genetic contribution, identical 
twins usually also share the environment in the womb and during early childhood, and 
the fact that identical twins do not have a 100% concordance rate emphasizes the 
important role of environmental influences in the development of the disorder. The most 
common environmental risk factors for the onset of schizophrenia are: (1) in early life: 
prenatal and postnatal infections, malnutrition and maternal stress, birth complications 
and age of birth; (2) in childhood: unfavorable upbringing, child abuse, experience of 
violence, growing up in poverty and head injuries; (3) in adolescence and adulthood: drug 
use, social influences and the stress of modern life (6). 

Psychosis occurs in various psychiatric disorders, such as schizophrenia, bipolar 
disorder and major depression with psychotic features. It is interpreted as inadequate 
information processing in the brain, making it difficult to distinguish between real and 
imagined stimuli and between relevant and neutral contexts. The structural and 
molecular basis of psychosis is still not well understood, largely due to the complexity 
of higher brain functions and the practical and ethical limitations of studying the living 
human brain. Although it is not possible to mimic all of the human symptoms in 
animals, it is possible to study the behavioral, pathophysiological and neuroanatomical 
changes relevant to these complex disorders under controlled conditions (7). Since the 
current treatment of psychotic disorders has limited success, developing new 
therapeutic options would be highly relevant for the patients suffering from psychosis. 
Animal models can be useful tools for the preclinical investigation of the pathogenesis 
of mental disorders and the efficacy of their treatment. Although traditional animal 
models based on the “black box” approach and interpretation of behavioral tests have 
proven useful in the preclinical investigation of antipsychotic drug candidates, more 
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comprehensively validated and robust models are needed to better understand the 
mechanism of antipsychotic action in the development of new antipsychotics. There are 
numerous approaches to developing animal models of schizophrenia, both genetic and 
environmental. Numerous candidate genes, including DISC1, NRG1, and ErbB4, have 
been associated with increased risk of schizophrenia and used to create animal models 
to better understand the disorder (8). However, in this review article, we focus on the 
simulated environmental models that are most commonly used in animal research. 

Prenatal risk factors 

Maternal infection during pregnancy, especially in the early perinatal period, is a 
significant risk factor for the development of schizophrenia in the child. Epidemiological 
studies show that infection of the mother with the influenza virus during pregnancy 
increases the risk of schizophrenia in the child by a factor of 3-7 (9). As the placenta is 
the connection between the mother and foetus, the foetus can come into contact with 
mediators of the maternal immune response. Under physiological conditions, this process 
is strictly controlled, but in the event of a severe disruption of the mother's immune 
system, the mother's cytokines can be transferred to the foetus to a significant degree. The 
developing brain is very sensitive to a large amount of pro-inflammatory mediators, so 
maladaptive changes in development and molecular, structural and functional changes in 
the brain can occur and later in life develop into neuropsychiatric disorders (10). 
Numerous studies have investigated the link between activation of the maternal immune 
response and neurodevelopmental disorders in the offspring. Although there is a large 
body of research addressing this question in animal models, the results often vary 
depending on the dose of the immune response activator, animal strains and prenatal 
timing of administration. 

The two animal models most frequently used to study prenatal infections are based 
on the exposure of the mother animal to lipopolysaccharide (LPS) and the substance poly 
I:C (polyinosinic:polycytidylic acid). LPS is a component of the cell wall of gram-
negative bacteria such as Escherichia coli and Salmonella species, it binds to TLR4 
receptors (Toll like receptor 4) and is used to simulate a bacterial infection. Poly I:C is a 
synthetic analogue of double-stranded RNA and is used to simulate a viral infection. Poly 
I:C interacts with the TLR3 receptor, which is expressed on the endosomal membrane of 
B cells, macrophages and dendritic cells (9). LPS and poly I:C lead to the activation of 
microglia and the subsequent release of other pro-inflammatory cytokines such as IL-6, 
IL-1β and tumour necrosis factor-alpha (TNF-alpha). After exposure of pregnant female 
rats to LPS and poly I:C, there is an increase in these cytokines in the foetal brain, and 
the elevated cytokine levels can be maintained in adulthood. High cytokine levels in 
young animals lead to structural and functional changes in the brain. Structural changes 
include a reduction in the volume of the hippocampus, an enlargement of the cerebral 
ventricles, or a reduction in the thickness of the cerebral cortex (11). The development of 
structural changes in the brain during the progression of the disease supports the 
neurodevelopmental theory of schizophrenia, and in addition to the changes in the brain 
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there are also changes in behaviour, such as anxiety-like behaviour, hypolocomotion and 
prepulse inhibition deficit that resemble schizophrenia-like behaviour (12, 13). In the 
article written by Bao et al., results from various studies utilizing different doses of LPS 
and poly I:C and rodent species are compiled, revealing the diverse outcomes associated 
with these experiments (14) (Table I, Table II). 

 
Table I  Outcomes of offspring after inducing MIA by LPS with different doses and 

rodent species (15-38) 
Tabela I  Ishodi MIA modela kod mladunaca koristeći različite doze LPS i vrste glodara 

(15-38) 
 

Paper Animals 
Dose and 
Injection  

Day 
Outcomes 

Domínguez Rubio 
et al., 2017 

BALB/c 
mice 

0.26 mg/kg 
GD15 

– Fetal brain damage 
– Microglial/macrophage activation 
– ↑ Il1b, iNos, nNos gene expression 

Arsenault et al., 
2014 

C57BL6/J 
mice 

120 μg/kg 
GD15–17 

– Fetal brain: 
↓ Astrocytic marker: glial fibrillary acidic 

protein (GFAP) 
↓ Neuronal marker: NeuN 

Qin et al., 2017 C57 mice 
75 μg/ kg 

GD11 

– Abnormal levels fat development, blood 
lipids, and glucose metabolism 

– ↑ Adipocyte differentiation markers: 
CEBPA, CEBPB, PPARG, and activator 

protein 2 (AP2) 

Hsueh et al., 2017 
C57BL6/J 

mice 

100 μg/kg 
(total) 

GD15–17 

– Anxiety-like behaviors 
– ↓ Cerebral serotonin (5-HT) 

– ↓ Tph2 and Slc6a4 gene expression 

Hsueh et al., 2018 
C57BL6/J 

mice 

100 μg/kg 
(total) 

GD15–17 

– Social deficits 
– Cerebral expression changes immune, 

developmental- and neuronal structural-related 
genes 

Labrousse et al., 
2018 

C57BL6/J 
mice 

0.12 μg/g 
GD17 

– Memory deficits 
– Alteration fatty acid composition 

– ↑ IL-6 cytokine fetal brain 

Fricke et al., 2018 
C57BL6/J 

mice 
100 μg/kg 
GD15.5 

Intestinal injury 

Wang et al., 2019 
C57BL/6J 

mice 
20 μL 

GD0–16 

♂ Offspring: 
– Anxiety-related behaviors 

– ↑ Corticotropin-releasing hormone (CRH) 
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protein expression 
– ↑ c-Fos-positive cells 

Elgin et al., 2019 
C57BL6/J 

mice 
100 µg/kg 
GD15.5 

– Intestinal injury 
– ↓ Goblet and Paneth cells 

– ↑ Serum levels of IL-6, TNF, KC/GRO,  
IL-10, and IL-1β 

Chin et al., 2019 
C57BL6/J 

mice 
20 mg/kg 

GD16 

♂ Offspring: 
– ↑ Adipose tissue 
– ↓ Muscle mass 
– ↑ Plasma leptin 

Brown et al., 2017 CD-1 mice 
50 μg/dam 

GD15 

Alterations fetal brain: 
– ↑ Lipid metabolism 

– ↑ Amino acid metabolism 
– ↑ Purine metabolism 

Li et al., 2018 D-1 mice 
20 μg/kg 

GD7.5–17.5 

– ↓ Body weight 
– ↑ Cox2 expression and related inflammatory 

factors 

Eloundou et al., 
2019 

CD-1 mice 
25 μg in  

100 μL PBS 
GD17 

– Fetal vessel resistance 
– Fetal brain: 

↑ Iba1 

Lee et al., 2019 ICR mice 
2 mg/kg 
GD16.5 

Morphological changes fetal brain 

Liu et al., 2017 
Sprague-

Dawley rats 
1 mg/kg 
GD14 

– ↑ Fetal resorption rates 
– ↓ Fetal weight 

Wang et al., 2017 
Sprague-

Dawley rats 
0.79 mg/kg 
GD8, 10, 12 

– Hypertension 
– Renal: 

↑ Il6, Fli1, Tnfa, Dnmt1 and Dnmt3b  
gene expression 

↑ DNA methylation 

Yu et al., 2018 
Sprague-

Dawley rats 
0.79 mg/kg 
GD8, 10, 12 

– ↓ Body weight 
– Dyslipidemia 

– Serum and hepatic levels: 
↑ Total cholesterol, triglycerides, low-density 

lipoprotein cholesterol 
↑ Aspartate amino transferase and alanine 

aminotransferase 
– Gene expression hepatic lipid metabolism 

↑ Vldlr 
↓ Tm7sf2 

Mouihate et al., 
2019 

Sprague-
Dawley rats 

100 µg/kg 
GD15, 17, 19 

– ↓ Motor activity 
– ↑ Hippocampal expression of SERT protein 
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Talukdar et al., 
2020 

Sprague-
Dawley rats 

1.5 mg/kg 
GD12 

– ↑ Anxiety-like behaviors 
– ↓ Social behaviors 

– Brain: 
↑ Lipid peroxidation 

↓ Total antioxidant content 
↑ Inflammatory genes: Tnfa, Il6, Il1b 
↑ Apoptotic genes: Bax, Cas3, Cas9 
↓ Neuroprotective genes: Bdnf, Bcl2 

Simões et al., 2018 Wistar rats 
0.25 mg/kg 

GD15 

– Behavioral impairment 
– Fetal brain: 

↑ Cytokine levels 
↑ Oxidative stress parameters 

↑ Matrix metalloproteinase (MMP)-2  
and MMP-9 

Vieira et al., 2018 Wistar rats 
0.5 mg/kg 

GD13, 15, 17, 
19 

– Endothelial dysfunction 
– Renal hemodynamic changes 

Izvolskaia et al., 
2019 

Wistar rats 
50 mg/kg 

GD12 

– ↓ Body weight 
– ↓ Testis weight 

– ↓ Testosterone level 
– ↓ Seminiferous tubule diameter 

– ↓ Number Sertoli and spermatid cells 
– ♂ Offspring: Development of sexual 

disorders 

Ignatiuk et al., 
2019 

Wistar rats 
50 μg/kg 

GD12 

– Delayed reproductive maturity 
– ↓ Body weight 

– ↓ Sex steroids ♀ offspring 

Lee et al., 2021 Wistar rats 
500 μg/kg 

GD9.5 

– Microbiome abundance: 
↑ Alistipes, Fusobacterium,  

and Ruminococcus 
↓ Coprococcus, Erysipelotrichaies, 

and Actinobacteria 
– ♂ Offspring: 

↓ Social behaviors 
↑ Anxiety-like and repetitive behavior 

↓ Hypomyelination in the prefrontal cortex 
and thalamic nucleus 

GD, gestational days; LPS, lipopolysaccharide; MIA, maternal immune activation; ↑, increase; ↓, 
decrease; ♂, male; ♀, female. 
GD, dan gestacije; LPS, lipopolisaharid; MIA, maternalna imunska aktivacija; ↑, povećanje; ↓, 
smanjenje; ♂, mužjak; ♀, ženka. 
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Table II  Outcomes of offspring after inducing MIA by poly I:C with different doses and 
rodent species (39-59) 

Table II  Ishodi MIA modela kod mladunaca koristeći različite doze poly I:C i vrste 
glodara (39-59) 

 

Paper Animals 
Dose and 
Injection  

Day 
Outcomes 

Juckel et al., 
2021 

BALB/c mice 
20 mg/kg 

GD9 

– Differences in species richness microbiome 
– ♂ Offspring: 

↑ Abundance of four families of Firmicutes 
phylum 

– ♀ Offspring: 
↑ Abundance of Lactobacillaeles 

↓ Abundance 
of Prevotellaceae and Porpyromonadaceae 

Mandal et al., 
2011 

C57BL/6 
mice 

20 mg/kg 
GD12 

Preferential to Th17 cell differentiation of 
lymphocytes 

Giulivi et al., 
2013 

C57BL/6J 
mice 

20 mg/kg 
GD12.5 

– Behavioral impairments 
– Adult splenocytes: 

↓ Mitochondrial ATP production 

Arsenault et al., 
2014 

C57BL/6J 
mice 

5 mg/kg 
GD15–17 

– ↓ Growth and sensorimotor development 
– Fetal brain: 

↑ IL-2, IL-5, and IL-6 cytokines 
↑ Metabotropic receptor 5: mGluR5 

Tang et al., 2013 
C57BL6/J 

mice 
5 mg/kg 

GD9 

– Juvenile cortex: 
Hypoacetylation of histone H3 and H4 
↓ Promotor-specific histone acetylation 

(Gria1, Slc17a7) 
– Juvenile hippocampus: 
↑ Disc1 and Ntrk3 genes 

– Adult offspring: 
Behavioral abnormalities 

No changes in histone acetylation 
↓ Promotor-specific histone acetylation 

(Gria1, Slc17a7) 

MacDowell et al., 
2016 

C57BL/6J 
mice 

5 mg/kg 
GD9.5 

Adult frontal cortex: 
– Activated innate immune receptor TLR3 

signaling pathway 
– Oxidative/nitrosative stress 
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– Accumulation of proinflammatory mediators 
(Nfkb and iNOS) 

da Silveira et al., 
2017 

C57BL/6J 
mice 

5 mg/kg 
GD9 or GD17 

– Neuroanatomical alterations 
– Behavioral alterations 

– ↓ Brain volume 
– ↓ Glucose preferences 

Basil et al., 2018 
C57BL/6N 

mice 
5 mg/kg 

GD9 
Hypomethylation of adult brain 

Li et al., 2018 
C57BL/6J 

mice 
20 mg/kg 
GD12.5 

– Activation of local circuit interneurons adult 
brain 

– ↑ Synaptic strength adult brain 

Garcia-Valtanen 
et al., 2020 

C57BL/6J 
mice 

20 mg/kg 
GD12 

– Neonate immune organs and brain: 
– ↑ Cytokine levels of TNFα and IL-18 

– Adult: 
Alteration in behavioral responses 

Carlezon et al., 
2019 

C57BL/6J 
mice 

20 mg/kg 
GD12.5 

– ♂ Offspring: 
↓ mRNA and protein levels of TNFα/iNOS, 

IL-6/IL-1B, anti-inflammatory factors 
– ♀ Offspring: 

↑ mRNA and protein levels of TNFα/iNOS, 
IL-6/IL-1β, anti-inflammatory factors 

Barke et al., 2019 
C57BL/6J 

mice 
20 mg/kg 
GD12.5 

Fetal and placental sex influenced: 
– Responses of immune genes to metabolic 

and inflammatory stress. 

Openshaw et al., 
2019 

C57BL/6 
mice 

20 mg/kg 
GD12.5 

– ↑ CCL5 and CXCL10 fetal brain 
– ↑ Cytokines/chemokines in Map2k7 Hz 

mice 

Garcia-Valtanen 
et al., 2020 

C57BL/6J 
mice 

20 mg/kg 
GD12 

– Neonate immune organs and brain: 
↑ Cytokine levels of TNFα and IL-18 

– Adult: 
Alteration in behavioral responses 

Tsivion-Visbord 
et al., 2020 

C57BL/6J 
mice 

5 mg/kg/mL 
GD9 

Fetal brains: 
– Dysregulation in brain development-related 

gene pathways 
– ↑ RNA-editing 

Dabbah-Assadi 
et al., 2019 

CD-1 mice 
5 mg/kg 

GD12.5, 17.5 

– ♂ Offspring: 
Alteration in social interaction 

↑ Nrg1 and Erbb4 gene expression 
– Adult: 

Behavioral changes 
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Ding et al., 2019 
Sprague-

Dawley rats 
10 mg/kg 

GD9 

– Age-related behavioral and neuro-
inflammatory changes 

– Activation of microglia Astrocytes activated 
at PND60 

McColl et al., 
2019 

Sprague-
Dawley rats 

10 mg/kg 
GD14 

Fetal brains: 
– ↑ Amino acid transporters 

– ↓ Snat5, Eaat1, and Glyt gene expression 

Hu et al., 2019 
Sprague-

Dawley rats 
10 mg/kg 

GD17 

– Depressive-like behavior 
– Dendrite development obstruction 

– ↑ Isg15 expression brain 

Talukdar et al., 
2020 

Sprague-
Dawley rats 

20 mg/kg 
GD12 

– ↑ Anxiety-like behaviors 
– ↓ Social behaviors 

– Brain: 
↑ Lipid peroxidation 

↓ Total antioxidant content 
↑ Inflammatory genes: Tnfa, Il6, Il1b 
↑ Apoptotic genes: Bax, Cas3, Cas9 
↓ Neuroprotective genes: Bdnf, Bcl2 

Meehan et al., 
2017 

Wistar rats 
4 mg/kg 

Early = GD10 
Late = GD19 

♂ Offspring: 
– Sensorimotor gating deficits 

– ↑ D1r gene expression in nucleus 
accumbens 

Hollins et al., 
2018 

Wistar rats 
5 mg/kg 

GD10 and 
GD9 

Fetal brains: 
– Dysregulation in brain development-related 

gene pathways 
– ↑ RNA editing Neonates: 

– ↑ lymphoid aggregates 
– Altered intestinal inflammatory profile 
– Disruption in GI barrier tight junction 

protein 
Adults: 

– ↑ Anxiety-like behavior 

Kowash et al., 
2019 

Wistar rats 
10 mg/kg 

GD15 

– ↓ Litter size depending on Poly I:C supplier 
– ↓ Placenta weight 

♂ Offspring: 
– ↓ Fetal brain weight 

GD, gestational days; MIA, maternal immune activation; Poly I:C, polyinosinic:polycytidylic acid; TLR3, 
Toll-like receptor 3; GI, Gastrointestinal; PND, postnatal day; CCL5, chemokine (C-C motif) ligand 5; 
CXCL10, C-X-C motif chemokine ligand 10; ↑, increase; ↓, decrease; ♂, male; ♀, female. 
GD, dan gestacije; MIA, maternalna imunska aktivacija; Poly I:C, poliinozinska:policitidilna kiselina; 
TLR3, receptori slični Tolu 3; GI, gastrointestinalni; PND, postnatalni dan; CCL5, hemokinski (C-C motiv) 
ligand 5; CXCL10, C-X-C motiv hemokinski ligand 10; ↑, povećanje; ↓, smanjenje; ♂, mužjak; ♀, ženka. 
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Postnatal risk factors  

Early life stress 

Epidemiological data suggest that unfavorable early life experiences, especially 
chronic stress, can have a significant impact on cognitive and emotional performance. 
Adverse conditions in early childhood, including poverty, parental loss, maternal 
substance abuse, or maternal depression, are associated with an increased likelihood of 
developing psychopathology later in life (60). Given all the challenges of studying 
children and the many uncontrollable factors, such as genetic predisposition, it is 
necessary to develop animal models for these studies. Animal models allow the 
investigation of direct cause-effect relationships, as well as complete control of the 
genetic background and prenatal environment. In addition, the parameters of interest can 
be manipulated, and subsequent interventions can be controlled throughout the study 
period (61). One of the models used to induce stress at a young age is to impoverish the 
environment by removing the sawdust from the cage and placing a plastic wire mesh 
raised from the floor of the cage on which the young are reared. These animals show 
cognitive and emotional consequences later in life, such as disturbance in learning and 
memory, impaired social behaviour, anxiety-like behaviour, depressive-like behaviour, 
dendritic atrophy, etc. This method is widely used and has been described in detail by 
Tallie Baram's research group (62). 

Social aversion in adolescence 

Although stress can cause undesirable phenotypes in all circumstances, adolescence 
is a particularly sensitive time for social stress (63). Adolescence is associated with 
increased neuronal plasticity at all levels (64, 65), and this window of plasticity closes in 
early adulthood as the brain reaches maturity and neuronal networks become much more 
rigid. Therefore, early adulthood is the period when most psychiatric phenotypes 
manifest (66). Despite considerable efforts, the behavioral, structural, functional and 
molecular changes triggered by social stress in adolescence are still not sufficiently well 
characterized. 

As sociability is an evolutionarily conserved trait in mammals (67), the stress of 
social isolation and social defeat during adolescence in rodents is often used as a model 
to understand the relationship between social stress in adolescence and risk of psychiatric 
phenotypes (68). However, despite intensive research, studies conducted to date are not 
consistent in terms of behavioral outcomes following social isolation, as results often 
differ depending on the experimental protocol, rodent species, behavioral tests, and sex 
of the animals, as shown in a meta-analysis performed by Manojlović et al. (69). The 
details of the studies used in this meta-analysis can be found in Table III. In addition, 
most studies on social isolation in adolescence focus exclusively on male animals, 
although females are almost twice as likely to be affected by these disorders (70). 
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Table III  Different rodent species, isolation time and behavioral parameters used in social 
isolation in adolescence paradigm (71-100) 

Table III  Različite vrste glodara, vreme izolacije i parametri ponašanja koji se koriste u 
paradigmi socijalne izolacije tokom adolescencije (71-100) 

 

Paper Animals 
Isolation 
duration 

Behavioural parameter 

Jeon et al., 2023 
C57BL/6J mice, males 

PND 21-80 
Social sniffing index 

C57BL/6J mice, 
females 

Social sniffing index 

Wang et al., 2022 C57BL/6 mice, males PNW 4-12 Time in the centre of open field (%) 

Zhao et al., 2022 
Sprague–Dawley rats, 

females 
PND 21-35 

Time in the centre of open field (s) 

Social interaction (%) 

Potrebić et al., 2022 Wistar Han rats, males PND 29-43 Time spent in interaction (s) 

Usui et al., 2021 C57BL/6N mice, males PND 21-50 
Time in the centre of open field (s) 

Social interaction (s) 

Sakurai et al., 2021 
C57BL/6JJcl mice, 

males 
PNW 5-8 Time in the centre of open field (s) 

Acero-Castillo et al., 
2021 

Wistar rats, males 
For 21 days 

during 
adolescence 

Open arms exploration (%) 

Tan et al., 2021 
C57BL/6J mice, 

females 
PNW 3-8 Social interaction (s) 

Deal et al., 2021 HS rats, male PNW 4-9 Time in the centre of open field (s) 

Amancio-Belmont  
et al., 2020 

Wistar rats, males PND 24-64 Time in the open arms (s) 

Park et al., 2020 Wistar rats, males PND 21-63 Time in the open arms (s) 

Chen et al., 2020 
C57BL/6J mice, males 
and females combined 

PND 21-56 
Time in the centre of open field (s) 

Total contact time (s) 

Pais et al., 2019 

C57BL/6J mice, males 

PNW 4-8 

Time in light in LDB (%) 

Interaction zone time (s) 

C57BL/6J mice, 
females 

Time in light in LDB (%) 

Interaction zone time (s) 

Mavrikaki et al., 
2019 

Spraque-Dawley rats, 
males 

PND 21-63 Time spent in open arms (%) 
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Spraque-Dawley rats, 
females 

Time spent in open arms (%) 

Lynch et al., 2019 Long-Evans rats, males PND 27-69 Open arms time (s) 

Lin et al., 2018 
C57BL/6J mice, sex 

not specified 
PND 21-35 Time in the centre of open field (s) 

Cao et al., 2017 CD1 mice, males PND 30-86 
Open arms time (%) 

Time spent in interaction (s) 

Zhang et al., 2016 C57BL/6J mice, males PND 38-80 Social interaction ratio 

Amiri et al., 2016 NMRI mice, males PND 21-49 Open arms time (%) 

Skelly et al., 2015 Long-Evans rats, males PND 28-70 Open arms time (s) 

Liu et al., 2015 C57BL/6 mice, males PND 21-49 Time in the interaction zone (s) 

Amiri et al., 2015 
Swiss albino mice, 

males 
PND 21-67 Time in the centre of open field (s) 

Haj-Mirzaian et al., 
2015 

NMRI mice, males PND 21-49 Time in the centre of open field (s) 

Lopez et al., 2015 
C57BL/6J mice, males 

PND 21-60 
Time in the dark side (s) 

C57BL/6J mice, 
females 

Time in the dark side (s) 

Karkhanis et al., 
2014 

Long–Evans rats, 
males 

PND 28-74 Open arms time (min) 

Butler et al., 2014 
Long Evans rats, 

females 
PND 31-73 Open arms time (s) 

Butler et al., 2014 Long Evans rats, males PND 28-70 Open arms time (s) 

Wall et al., 2012 

Sprague–Dawley rats, 
males 

PND 21-49 
Social interaction time (s) 

Sprague–Dawley rats, 
females 

Social interaction time (s) 

Chappell et al., 2013 Long Evans rats, males PND 28-72 Open arms time (s) 

Ros-Simó et al., 
2012 

CD1 mice, males PND 21-70 Open arms time (%) 

PND, postnatal day; PNW, postnatal week 
PND, postnatalni dan; PNW, postnatalna nedelja 

 

Use of cannabis in adolescence 

Cannabis is the most commonly used drug, and its use often begins in adolescence. 
Research suggests that regular cannabis use in adolescence may increase the likelihood 
of developing schizophrenia by two to three times compared to people who do not use 
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cannabis, and this effect is likely to be dose-dependent (101). In animal models, chronic 
treatment with the synthetic cannabinoid receptor agonist WIN 55,212-2 in adolescence 
has been shown to lead to long-lasting behavioral deficits in adulthood. The results show 
that the behavioral deficits were more pronounced after treatment with WIN 55,212-2 in 
adolescence than after chronic treatment in adulthood (102). WIN 55,212-2 is a full 
agonist of CB1 cannabinoid receptors and it has a much higher affinity for these receptors 
than tetrahydrocannabinol (THC) (103). WIN 55,212-2 is also an agonist of CB2 
cannabinoid receptors (104), as well as PPARα and PPARγ nuclear receptors (105). 

Conclusion 
Animal models are crucial for studying schizophrenia, helping to uncover 

neurobiological mechanisms and aiding in the development of new treatments. However, 
they face limitations due to interspecies differences and the complexity of the human 
brain. Schizophrenia models must meet three key criteria to be translatable: (1) symptom 
homology, reflecting core schizophrenia symptoms (positive, negative, and 
cognitive); (2) construct validity, replicating neurochemical and structural changes (e.g., 
dopamine and glutamate dysregulation); and (3) predictive validity, demonstrating the 
effectiveness of antipsychotics (106). However, no model fully meets all these criteria, 
particularly when it comes to replicating the schizophrenic mind, as animals cannot self-
report symptoms like hallucinations or alogia. While animal models can replicate certain 
schizophrenia features, they cannot fully capture the complexity of the disorder (107). 

The development of schizophrenia is influenced by a complex interaction of genetic 
and environmental factors, with prenatal and postnatal experiences playing a significant 
role in shaping risk. Animal models simulating these risk factors provide valuable 
insights, but must include both male and female subjects, as psychotic disorders affect 
these genders differently. Despite the advances, replicating the full scope of 
schizophrenia remains difficult, and more research is needed to understand its 
pathophysiology and develop effective treatments. Improved models, integrating 
environmental influences and more comprehensive research practices, hold the potential 
to advance preventive measures and treatment options for individuals at risk of psychosis. 
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Kratak sadržaj 
Šizofrenija i drugi psihotični poremećaji predstavljaju značajan klinički izazov, pri čemu i 

genetski faktori i faktori sredine doprinose njihovom nastanku. Životinjski modeli su ključni alati 
za razumevanje kompleksnih neurobioloških mehanizama koji leže u osnovi psihoza, kao i za 
razvoj novih terapeutskih pristupa. Ovaj revijalni rad se fokusira na najčešće korišćene životinjske 
modele u istraživanjima šizofrenije, naročito one zasnovane na prenatalnim i postnatalnim 
faktorima rizika. Prenatalna izloženost infekcijama, kao što su bakterijski lipopolisaharidi (LPS) 
i virusna komponenta poly I:C, aktivira imuni odgovor koji dovodi do dugotrajnih strukturnih i 
funkcionalnih promena u mozgu, uključujući atrofiju hipokampusa i stanjivanje korteksa. 
Postnatalni faktori, uključujući stres u ranom dobu, socijalnu izolaciju i upotrebu droga, naročito 
kanabisa, takođe se modeliraju kako bi se proučavao njihov uticaj na razvoj mozga i nastanak 
psihoza. Ovi modeli omogućavaju kontrolisanu manipulaciju varijablama, pružajući uvide u 
patofiziologiju bolesti. Međutim, varijabilnost u eksperimentalnim protokolima i nedostatak 
učešća ženskog pola u mnogim studijama ukazuju na potrebu za robusnijim i inkluzivnijim 
životinjskim modelima. Na kraju, ovi modeli su ključni za unapređenje našeg razumevanja 
šizofrenije i testiranje potencijalnih terapeutskih intervencija. 

 
Ključne reči:  psihoza, prenatalne infekcije, stres u ranom dobu, socijalna averzija, 

zloupotreba droga 
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