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ABSTRACT

Underage costs are not easily quantifiable in 

spare parts management. These costs occur when a 

spare part is required and none are available in 

inventory. This paper provides another approach 

to underage cost optimization for subassemblies 

and assemblies in aviation industry. The quantity 

of spare parts is determined by using a method for 

airplane spare parts forecasting based on 

Rayleigh's model. Based on that, the underage cost 

per unit is determined by using the Newsvendor 

model. Then, by implementing a transformed 

accelerated double-step size gradient method, the 

underage costs for spare sub-assemblies and 

assemblies in airline industry are optimized.  
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1. INTRODUCTION 

The main goal of this paper is to present an 

innovative implementation of gradient methods in 

optimization of underage costs for spare parts in 

aviation industry. The gradient methods represent 

methods for systematic research and solution finding 

in an iterative procedure for unconstrained 

optimization problems. The underage cost is defined 

as the cost per unit of product in case of negative 

inventory level at the end of the product's usability 

period. All airline companies share a common goal of 

minimizing these costs on one side and increasing the 

level of aircraft's availability on the other. Hence, this 

paper further elaborates on some of the methods of 

unconditional optimization.  

2. THEORETICAL PART  

Due to the fact that minimizing underage costs is 

critical, the problem will be presented as follows. 

Minimizing given objective function is required: 

                      
 (min) f , ,nx x R                        (1)                                

where for some point x
* 

the expression (1) is satisfied. 

Defined point  x
*
can be described trough the next two 

definitions: 

Def: Point x
* 

is the local minimum point if there exists 

a neighborhood U(x
*
) such that  

                             
*(x ) (x)f f                              (2) 

for each vector  * .x U x  

Point x
*
 is the point of strict local minimum if 

there exists a neighborhood U(x
*
) such that 

*(x ) (x)f f
                            

  (3) 

for each vector *x x and  * .x U x  

Def: Point x
*
is the global minimum point if 

                       
*(x ) (x), x Rnf f   .                (4) 

Then, the neighborhood U(x
*
) of that point exists for 

each vector *x x and  *x U x such that: 

                   
*(x ) (x), x Rnf f   .                (5) 

The practice proved it was easier to find local 

minimum points than finding the global minimum 

point. Thus, finding the global minimum point could 

be reduced to determination of several local 

minimums and then identifying the smallest. The 

smallest one will be declared as the global minimum. 

Finding the local minimum is even easier if the search 

is conducted at the descending vector direction. If the 

objective function is differentiable, than the gradient 

method should be used.  

As stated above, the gradient methods are 

numerical iterative methods. In order to determine the 

minimal function value by using such a method, it is 

necessary to define the size of the iterative step and 

search direction since both are crucial elements of 

each gradient iterative scheme. There are several 

iterative methods, each defined in a specific way, 

relevant for this work. Some of them are presented in 

articles (Andrei, 2006), (Stanimirović et al., 2010), 

71



 

Mathematics 

(Petrović et al., 2014), (Petrović et al., 2015), 

(Stanimirović et. al. 2015). After their comparison, it 

has been concluded that the TADSS method 

(Stanimirović et. al., 2015) (Transformed Accelerated 

Double Step Size) outperforms all other gradient 

iterative methods. 

The essence of the TADSS method is in proper 

setting of numerical iterations, in order to obtain a 

satisfying approximate solution to the problem. The 

iteration process for this method is defined as: 
 

 1

1 1 1 ,k k k k kx x g


      
 

           (6) 

where αk denotes the size of the iterative step – can be 

computed as in algorithm 1. Since the TADSS is an 

accelerated optimization method, the acceleration 

parameter that presents a multiplying factor of the size 

of the iterative step has to be defined.  Determination 

of this factor is based on Taylor’s expansion and 

appropriated approximation of Hessian and can be 

calculated as: 

      

  

2
1

1 2 21

1 1 1
2

1 1

k k k k k

k

k k k

f x f x g

g






      
 

   

  (7)
 

where gk denotes a gradient vector of objective 

function at the k-th iterative point.The iterative step, 

according to this method, can be computed as in (7).  

The size of the iterative step αk can be determined by 

using the following backtracking procedure: 

Algorithm 8: Backtracking line search procedure for 

calculating iterative step αкstarting at α = 1 

Requirements:  Objective function f(x), the direction dk of 

the search at the point xk, real numbers 0<σ<0.5 and η∈(0,σ) 

1. Set α = 1. 

2. While    k k k k kf x d f x g d   , take 

α:= ηα. 

3. Return αк=α. 

Аlgorithm 9: Transformed accelerated double step  size 

method  (TADSS method) 

Requirements:                       

1. Setk = 0, compute f(x0), g0 and take γ0 = 1. 

2. If kg    then go to Step 8, else go to the 

next step. 

3. Find the stepαк applying the Algorithm 1. 

4. Compute the next interative pointxk+1 using 

(6). 

5. Determine scalar γk+1 using  (7) 

6. If γk+1<0 take γk+1= 1. 

7. Setk:= k + 1, and go to the Step 2. 

8. Return  xk+1 and  f(xk+1). 

3. EXPERIMENTAL 

3.1. Method evaluation and presentation 

An innovative model for spare parts assessment in 

aviation industry is presented in paper (Kontrec et al., 

2015). This paper also includes a method for 

determining the required quantities of spare parts in 

inventory and, on those basis, determining the 

underage costs per unit of product. As these costs refer 

to individual parts, the goal of this paper is to optimize 

the underage costs for subassemblies or assemblies 

comprised of several such parts.  

If the quantity of spare parts is determined, as 

conducted in paper (Kontrec et al., 2015), then the 

underage costs can be calculated by using the 

Newsvendor model (Hill, 2011). The Newsvendor 

model is widely known model used mostly when 

evaluation of a certain stochastic variable is required. 

This evaluation is a compromise between the loss that 

has occurred when the value of stochastic variable is 

underestimated and the loss that will occur if the value 

of that stochastic variable is overestimated, as follows: 

              

1( ) (10)u

o u

c
q

c c

 


             
1 denotes Inverse distribution function; co 

denotes cost per unit of product in case of positive 

level of inventory at the end of the product's usability 

period; cu denotes the underage cost i.e. cost of unmet 

demand for spare part. 

As on the basis of formula (10) only underage costs 

for individual parts can be determined, in cases where 

entire assembly or subassembly need to be replaced, 

minimizing underage costs can be conducted by using 

the TADSS method. 

In that case, the objective function can be 

expressed as in (11): 
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Wherein: 

cuk - underage cost in certain flight hour wk, k = 1,…,n 

coi -price per unit of the part of the assembly, where 

i=1,...,m, andmrepresents the number of parts 

comprised in the assembly. 

Tuti-total unit time of i-th part comprised in the 

assembly. 

Decision variables are: 

                       
 1 2, , , ,k k k nkw w w w                  (12)

 

Initial values of decision variables are values from 

environment of points that represent the life cycle 

duration of each part:  

 
1 1 2 20 , , ,

n nut ut ut ut ut utw T T T T T T         (13)
 

If we implement TADSS method to the defined 

objective function (10), we can conclude that the size 

of the iterative step is: 

                  
 1

1 1 1 ,k k k k kw w g


      
           

(14) 

while the acceleration parameter can be expressed as 

follows: 

      

  

2
1

1 2 21

1 1 1
2 (15)

1 1

k k k k k

k

k k k

f w f w g

g






      
 

   

Based on all of the aforementioned, the objective 

function gradient can be calculated as stated in (16):  

 

 

 

When the total unit time Tut of 

assemblies/subassemblies' constitutive parts and prices 

of those parts are known, then on the basis of (16) 

their minimum underage costs in specific time 

intervals can be determined. These intervals or 

inspection points can be determined as conducted in 

papers (Wu, 2013), (Tian, 2013).  

4. RESULTS AND DISCUSSION 

Main contribution of this paper is to provide the 

possibility to minimize underage costs for spare 

assemblies and subassemblies in aviation industry. As 

previously stressed, these costs are hard to quantify. In 

most cases, only a rough assessment of these costs is 

conducted. These assessments are complex and hardly 

ever completely objective and impartial. Some 

consequences of the lack of spare parts, such as 

damage to a company's reputation due to unforeseen 

delays, are almost impossible to quantify as cost. 

Hence, the contribution of this paper is even more 

significant. Moreover, the gradient methods have not 

been utilized in cost optimization until now. This 

paper combines the Transformed Accelerated Double 

Step Size method, method for spare parts inventory 

forecasting based on Rayleigh's model and the 

Newsvendor model. If the total unit time for each part 

of the assembly or subassembly and prices of those 

parts are known, it is possible to determine the 
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underage cost in preselected time intervals, based on 

the proposed method.  
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