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ABSTRACT

The study of complex differential equations in 

recent years has opened up some of questions 

concerning the determination of the frequency of 

zero solutions, the distribution of zero, oscillation 

of the solution, asymptotic behavior, rank growth 

and so on. Besides, this is solved by only some 

classes of differential equations. In this paper, our 

aim was to determine the number of zeros and 

their arrangement in the first quadrant, for the 

complex canonical differential equation of the 

second order. The accuracy of our results, we 

illustrate with two examples. 
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1. INTRODUCTION 

The study of complex differential equations, in 

terms Nevanlinna theory, becomes actual again since 

1982, the publication of the following works: Bank 

(1988), (Bank & Laine, 1982; 1983), (Bank et al., 

1989). 

Then are generally treated canonical complex 

differential equations of second order with a 

coefficient which is an entire function. All of these 

studies have focused mainly on two general issues. 

The first one involved the determination of the 

frequency of zero solutions, while the other studied 

the distribution and the asymptotic behavior of zero 

solutions in the first quadrant i.e., in the sector 

0 ,
2

z R


   . About the problem of distribution 

of zero solutions of complex differential equations, 

the case where the coefficient  a z  is polynomial 

 nP z  is quite clear. When  a z  is the transcendent 

function the situation is much more complex. Review 

of the scientific literature, such as (Gundersen, 1986), 

(Laine, 1993), (Shu Pei, 1994) and others, shows that 

there are mostly treated complex differential equations 

with transcendental coefficients 
ze and coefficients 

derived from it:  z

ne P z ,  z

ne P z ,  z

nP e , ..... 

This is because in Nevanlinna theory as a measure of 

transcendence and infinite growth, takes the function 

ze . Since xz ee  , x , as x  function 
ze  

tends to complex infinity of transcendent type. 

Unlike classical Nevanlinna theory, we are using 

the the idea of (Dimitrovski & Mijatović, 1998), 

(Lekić et. al., 2012), (Vujaković et al., 2011), 

(Vujaković, 2012) developed a new approach in 

determining the location and number of zero 

solutions. This method looked better in the 

applications for us.  

In this paper, the subject of our considerations is 

complex canonical differential equations of second 

order with constant coefficients. 

2. PRELIMINARIES  

For complex canonical differential equation of the 

second order : 

   
2

2
0

d w
a z w z

dz
                          (1) 

with an analytical coefficient 

     , ,a z x y i x y   , where  ,x y  and 

 ,x y  are harmonic functions, by series-iterations 

method which are described in detail in the works 

(Dimitrovski & Mijatović, 1998), (Lekić et al., 2012), 

(Vujaković, 2012), we get two fundamental solutions: 
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1 ...
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z z z z z z
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a z dz a z dz a z dz

z a z



    



     

   

 
     

  
 

2

2 2 2

0 0 0 0 0 0

sin

1
...

sin
. (3)

a z

z z z z z z

w z z

z za z dz a z dz za z dz
a z

z a z

a z



 
    

 



     

Function  1w z  and  2w z  we called oscillatory 

complex functions with base  a z . Mark them with 

(2) and (3), respectively. Further, let 

   F z z a z .                           (4) 

denotes a function of the frequency. We have seen in 

the papers (Vujaković et al., 2011; 2016), (Vujaković, 

2012) that the zero solutions (2) and (3) are 

approximately in the solutions of equations 

   

 

1

2

: 2 1 , 1,2,3,...
2

: , 0,1,2,...

w z a z n n

w z a z n n






   


  

.         (5) 

Therefore, it is important to know the behavior of 

 a z  for the analytical functions 

     , ,a z x y i x y   . 

Тheorem 1. For analytic function 

     , ,a z x y i x y   , in complex canonical 

second-order differential equation (1), it is possible to 

determine the equation of zero cosine and sine 

solutions. 

Proof. Putting z x iy   and 

     , ,a z x y i x y   , for example in the second 

equation of the system (5), after the elementary 

calculation (i.e., squaring, multiplying complex 

numbers and on the basis of equality of complex 

numbers), we obtain the following system of 

equations for  ,x y  and  ,x y . 

     2 2 2 2, 2 ,x y x y xy x y n      

     2 2 , 2 , 0x y x y xy x y    . 

Elimination  ,x y  from the second equation of 

the last system and substituting them in the first 

equation of the same system we get the equation for 

 ,x y . We got the system of equations 

 
 

 
 

2 2
2 2

2
2 2

2 2

2
2 2

, ,

2
, .

x y
x y n

x y

xy
x y n

x y

 

 


 

 

 





                   (6) 

If  ,x y  and  ,x y  are given, that is, if known 

coefficient  a z , from (6) we find the zero  ,n nx y  

of sine solutions  2w z  of complex differential 

equations of the second order (1). This means that (6) 

is a system of biquadratic equations. From (6), 

dividing  ,x y  and  ,x y , we get  

 

 

2 2 ,

2 ,

x yx y

xy x y






  . 

This equation is easy to solve only for the constant 

  1 2a z c ic  . 

Zero of cosine solutions for the canonical complex 

differential equations of the second order (1) can be 

found in a similar manner. Namely, from the first 

equation of the system (5) we have 

       , , 2 1 , 1,2,3,...
2

x iy x y i x y n n


      . 

From here, similarly as moment ago, we obtain a 

system of equations 

 
 

 
 

2 2 2
2

2
2 2

2

2

2
2 2

1
, ,

2

1 2
, .

2

x y
x y n

x y

xy
x y n

x y

 

 

 
   
   


  

    
   

             (7) 

Solving the system (5) is not a trivial task for all 

forms of the coefficient      , ,a z x y i x y   . 

The best and easiest way is if you have zero solutions 

of .     1 cosw z z a z  and     2 sinw z z a z  

at a proper geometric line, so there is some law of 

their schedule.  

Тheorem 2. Zeros solutions for  1 cosw z z  (and 

similar to  2 sinw z z ) exists if a module of the 

function  a z  is right proportional to the order of 
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2
1

2
n
 

 
 

 zero (respectively 2n ) and inversely 

proportional to the square of the module  .  

Proof. Using the polar form 
iz e   of a complex 

number, for example, from the system (7), we obtain 

the system  

 

 

2

2

2

2

2

2

1 cos 2
, ,

2

1 sin 2
, .

2

n

n


    




    



 
    

  


  
     

  

          (8) 

From here we have 

4 4
2 2

2

1

2
n


 



 
   

 
, that is we 

obtain the connection between the   and  , which 

does not depend on the argument 2 . If we write 

 a z  in polar form      , , ia z x y i x y Re     , 

we have 

2 2

2

1

2
R n





 
  
 

. Besides, from tan





  

follows  tan tan 2 tan 2      , or equivalent 

2 k     .  

By the same reasoning from the system (6) we prove 

the assertion for  2 sinw z z .  

3. MAIN RESULTS  

For starters, it is important to determine the 

number of zeros solutions of complex second order 

differential equation (1) for a constant   1 2a z c ic  , 

or to try to evaluate zeros better. Because of the 

multifaceted analytic functions it is best first to 

observe the characteristic examples of differential 

equations with constant coefficients 

     
2

1 22
0,

d w
a z w z a z c ic

dz
    .              (9) 

The problem is that we must know in advance for 

which  a z , the value of   1 2a z c ic  , which 

is ambiguous, it remains in the first quadrant, and 

when he leaves. Therefore, consider the four basic 

equations. 

1. Assume first that   1a z  , is pure real constant 

coefficient. Follows, 1 21 0, 0c c   . Then 

  1a z    and a function of frequency is 

 z a z z  . The solutions of the canonical 

complex differential equation of the second order 

 
2

2
0

d w
w z

dz
   are    1 2cos , sinw z z w z z  .  

Zeros of sine solutions , 0,1,2,...z n n   are on the 

real axis (limit of the first quadrant).  

2. For real constant coefficient   1a z    we have 

1 21 0, 0c c    . Then   1a z i    , and 

 z a z iz  . The solutions of canonical complex 

differential equations of the second order 

 
2

2
0

d w
w z

dz
   are    1 cosw z iz  and 

   2 sinw z iz . Zeros of sine solutions are in the 

solutions of equations , 0,1,2,...z n n   . They are 

on the imaginary axis and not in the first quadrant, 

except solution 0z  .  

3. Consider now the complex canonical second-

order differential equation  
2

2
0

d w
iw z

dz
  , with the 

imaginary constant coefficient  a z i , where 

1 20, 1 0c c   . Then  
1

2

i
a z i


   , and a 

function of frequency is  
1

2

i
z a z z

 
  

 
. 

Solutions of complex differential equations are

 1

1
cos

2

i
w z z

 
  

 
 and  2

1
sin

2

i
w z z

 
  

 
. 

Zeros of sine solutions  1 , 0,1,2,...
2

n
z i n


     

are in the second or fourth quadrant. So, there is no 

zero in the first quadrant. 

For complex canonical second-order differential 

equation  
2

2
0

d w
iw z

dz
  , with the imaginary 

constant coefficient  a z i  , are 1 20, 1 0c c     

and  
1

2

i
a z i


    . Zeros of sine solutions are 

 1 , 0,1,2,...
2

n
z i n


    . From this, we conclude 

that there are zeros in the first and third quadrant. 

By this elementary examination, we find out that 

only if    1 2Im Im 0a z c ic   , is likely to be 

zeros of sine solutions in the first quadrant. However, 

we need a more general and more secure approach to 

solving this problem, but not elementary examples. 
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Тheorem 3. For complex canonical second-order 

differential equation (9), with constant coefficients

  1 2a z c ic  , sine solution has zero in the first 

quadrant if 2 0c  . 

Proof. For a constant   1 2a z c ic  , z x iy  , 

zeros of sine solutions are in the roots of the equations 

  , 0,1,2,...z a z n n  . Hence, according to the 

formula (6), we obtain the system: 

 

 

2 2
2 2

1 2
2 2

2 2

2 2
2 2

,

2
.

x y
c n

x y

xy
c n

x y






 

 

 





                  (10) 

Because we want that z x iy   be in the first 

quadrant, therefore that 0, 0x y   holds, it must be 

2 0c   in the   1 2a z c ic  . If this holds yet for 

x y  then 1 0c  . In case x y  we have that 1 0c  .

 

Let us now return to solving the system of 

equations (10). By switching to polar form 
iz e  , 

from 
2 2

1 2

cos 2
c n





  and 

2 2

2 2

sin 2
c n





  , we 

find 2

1

1
arctan

2

c

c
   . Now, from 

2 2

1 2

cos 2
c n





  

following 
2 24
1 2

n

c c


 


. Substituting these values in 

cosx    and siny    respectively, after the 

well-known trigonometric identities for the sine and 

cosine, we get the coordinates for the zeros of sine 

solutions of the complex canonical differential 

equations of the second order: 

 
2 2

1 2 1

2 2 2 24
1 2 1 22

c c cn
x x n

c c c c

  
 

 
,            (11) 

 
2 2

1 2 1

2 2 2 24
1 2 1 22

c c cn
y y n

c c c c

  
  

 
,         (12) 

for 0,1,2,..n  . 

From equations (12) it is evident that 0y  , and 

comparing equations (11) with (12) we see that 

x y . Dividing the (12) with (11) we obtain the 

equation 

2 2

1 2 1

2 2

1 2 2

c c c
y x

c c c

 
 

 
 of the straight line 

through the second and fourth quadrant. 

We still need to determine how many zeros have a 

sine i.e., cosine solution of canonical complex 

differential equations of second order in the sector 

,0 arg
2

z R z


   .    

Тheorem 4. In canonical complex second-order 

differential equation (9), with constant coefficients, 

the number of zeros of sine solutions is determined by 

the formula  
2 24

kN z kE


 

 
  

  

, where E  is a 

whole part of the above argument, and k  is an integer 

unit in the ,0 arg
2

z R z


   . Cosine solution has 

one less zero. 

Proof. For complex canonical differential equation of 

second order  

   
2

2
0

d w
i w z

dz
   

 

with constant coefficients  a z i   , according 

to Theorem 3, it follows that zeros of sine solutions do 

not exist for all ,  , but only for those values 

1 2,c c   , that satisfy equations (11) and (12). 

Then we get the points n n nz x iy   of region 

,0 arg
2

z R z


   . 

From a function of frequency 

  , 0,1,2,...z a z n n   we have 

2 24

, 0,1, 2,...n

n
z n



 
 


. We see that this is a 

series of zeros per the length 
2 24

n

n
z



 



 of some 

direction, which runs from 0z   to a point on a circle 

of radius R . The number of zeros is the number of 

slices on a circle of R  and has a lenght 
2 24

n

 
. 

If we introduce the function    E x x  (the 

whole part of the argument x ), based on the 

properties    E nr nE r , where n  is a positive 

integer, we have for the number of zeros:  
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2 2 2 24 4

n

n
N z E nE

 

   

   
    

       

. 

Notice that the sine zeros are equidistant because 

for two consecutive n  and 1n  is valid  

   

 

1

2 2 2 24 4

2 24

1

n nN z N z

n n
n E nE

E

 

   



 

  

   
     

       

 
  

  

. 

Concerning the property that the sine function 

within a period 2  has three zeros 0, , 2  and the 

cosine function in the same period has only two zeros 

3
,

2 2

 
, we conclude that the cosine solution has one 

less zero than sine.  

4. EXAMPLES  

Let us illustrate the validity of our results in the 

examples. 

Example 1. Sine solution of canonical complex 

differential equations of second order 

   
2

2
2 0

d w
i w z

dz
   , with constant coefficients 

  2a z i  , for which are 2 0c   and 1 2c c , has 

a zero in the sector ,0 arg
2

z R z


   . Number of 

zeros will be equal: 

 

 

4224

3,14

1,552 1

2,1 2 .

n
E nE nE

nE n

 
 

                

 

 

For example, if 10R  , then from 2 10n   

follows that there are 5n   sine zeros. 

Example 2. Let were given complex canonical 

second-order differential equations 

   
2

2
3 2 0

d w
i w z

dz
    with constant coefficient 

  3 2a z i  . Here are 1 23, 2c c   , so the 

conditions 2 0c   and 1 2c c  are fulfilled. Sine 

solution is in the circle. For example, in circle of 

radius 100z R   there are 50 zeros because: 

  
 

3 2 4224

sin
133 2

2 100

i

n
N z E nE

n
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