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ABSTRACT 

Time-dependent power flow equation is 

employed to calculate frequency response and 

bandwidth of low numerical aperture step-index 

optical fiber excited with Gaussian-like light source 

with large width. Both, frequency response and 

bandwidth, are specified as function of the fiber 

length measured from the input end of the fiber. 

Analytical and numerical solutions are compared 

and good agreement between results is obtained.  
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1. INTRODUCTION 

In recent decades there has been significant growth 

in the amount of transferred data both in long-distance 

and short-distance communication. For high-

performance short-distance communication, such as 

local-area networks (LANs), multi-node bus networks 

plastic or digital car networks, industrial control, 

plastic optical fibers (POFs) are often considered as 

best choice ((Golowich et al., 2003), (Ishigure et al., 

2000), (Green, 1996),  (Koeppen et al., 1998)). This is 

based upon their low cost, ease of manipulation and 

high bandwidth. 

In comparison to systems based upon glass optical 

fiber or copper wire, systems based upon POFs are 

much more affordable in total. With a fiber diameter 

of 1 millimeter, and a core diameter of 980 µm (for 

most applications) cutting and treating of POF`s ends 

is done without much effort. Nonetheless large core 

diameter allows POFs to be paired with light sources 

of higher NA, such as LED sources, using low-

precision plastic couplers. This, in total, results in 

inexpensive but robust systems that are easy to 

interconnect. Bandwidth of typical step-index optical 

fiber (SI POF) is higher than with copper wire systems 

and approximately is 100 MHz over 100 m (Koike, 

2015).  Bit rates of about 200 Mbit/s over 50 m can be 

obtained without any additional measures, and bit rates 

of over 1000 Mbit/s over 50 m have been realized with 

special transmission schemes (equalizing, OFDM) 

over the last years. 

From the previous statements it is clear that 

transmission properties of SI POF, such as bandwidth 

and frequency response, have most significant role in 

their further development. Frequency response and 

consequently bandwidth of multimode SI POFs 

depend strongly on the mode-dependent attenuation, 

modal dispersion and the rate of mode coupling 

(power transfer from lower to higher order modes). In 

order to examine influence of the width of launch 

beam to frequency response and bandwidth we 

calculated it for tested SI POF and compared with 

available results for the same fiber (Savovic et al., 

2014a). 

This paper is organized as follows. In chapter 2 

mathematical model based upon time-dependent 

power flow equation, developed by Gloge (Gloge, 

1973), is presented. Using the time-dependent power 

flow equation we have determined frequency response 

and bandwidth of SI POF with low numerical aperture 

in addition to mode coupling and mode-dependent 

attenuation. Comparison of results obtained by 

analytical and numerical solution is presented in 

chapter 3. Finally conclusion is presented in chapter 4.  

2. TIME-DEPENDENT POWER FLOW EQUATION  

2.1. Analytical solution 

Gloge’s time-dependent power flow equation can 

be written as (Gloge, 1973): 
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where ( , , )P z t  is power distribution over angle   

measured with respect to fiber axis, space z and time t; 

( )   is mode-dependent attenuation;  t z  is mode 

delay per unit length; and ( )D  is the mode-

dependent coupling coefficient. Mode-dependent 

attenuation can be written in the form 

()= 2
0 ...  A . Term 0  represents loss 

common to all modes and it can be accounted for by 

multiplying the end-solution by 0 z
e  (Gloge, 1973). 

More important is the term 
2A  which describes the 

losses at core-cladding boundary and for that reason, 

in solving (1), one needs to consider only the term 

2A  as the most dominant of the higher order modes 

(Gloge, 1972). Coupling coefficient ( )D  is, as it is 

stated, also mode-dependent (Olshansky, 1975), but 

mode-independent coupling constant D has been used 

frequently by other authors ((Gloge, 1973), (Drljaca et 

al., 2009), (Drljaca et al., 2012)). If coupling constant 

D is used equation (1) can be written as (Gloge, 1973):                                                  
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In order to solve time-dependent equation (2) 

analytically it is transformed into time-independent 

equation (Gloge, 1973):                                                        
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p D p
A p

z
.                 (3) 

Using time-independent power flow equation (3) 

analytical solution for impulse response can be 

obtained (Gloge, 1973). For short fibres 

(z<<1/(2(AD)
1/2

)), impulse response is:                                                   
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while in case of long fibers ((z>>1/(2(AD)
1/2

)), it has 

the form:                                 
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After obtaining impulse response, frequency response 

can be obtained easily by applying Fourier transform 

to the impulse response:

                              

( ) ( )exp(2 )




 H f Q t ift dt  .                   (6) 

After obtaining frequency response, -3dB bandwidth, 

for different lengths, is easily obtained by selecting 

frequencies for which frequency response has 50% 

drop for given length. 

2.2. Numerical solution 

In order to solve time-dependent power flow 

equation numerically we start from equation (1). In the 

same manner, as with analytical solution, for mode-

dependent attenuation term 
2A  is used and coupling 

coefficient is once more assumed to be constant – D. If 

so, equation (1) can be written as (2). After applying 

the Fourier transform to (2): 

( , , ) ( , , )   
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 
j tp z P z t e dt              (7)

 

the time-dependent equation (2) transforms into (8): 
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where 2  f is the angular frequency. 

The boundary conditions are: 

0

( , , )
( , , ) 0,             0,



 
 

 


 


c

p z
p z D     (9) 

where c  is the critical angle. The first condition 

implies that modes with infinitely large loss do not 

transfer any power; the second condition implies that 

mode coupling is limited to modes travelling with the 

angle 0.    

Since ( , , ) p z  is complex we can therefore 

separate ( , , ) p z  into its real and imaginary parts, 

p=p
r
+jp

i
. Equation (8) can now be rewritten as the 

following system of simultaneous differential 

equations: 
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After obtaining p
r 
and p

i 
by solving equations (10), 

frequency response at distance z from input end of the 

fiber is calculated as:
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After separating the power flow equation (8) into 

two simultaneous equations (10), we solved the latter 

(10) by explicit finite difference method (EFDM). 

Using central difference scheme for derivatives 

( , , ) /   p z  and 
2 2( , , ) /   p z  (Savovic et al. 

2004), (Djordjevich et al. 2000), (Anderson 1995): 
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and using the forward difference scheme for the 

derivative p(θ,z,)/z:  
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equations (10) can be written in the form:   
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Boundary conditions (9) now become: 
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where N=θc /Δθ is the grid size in the   direction. In 

order to prevent the problem of singularity at grid 

points 0  , the following relation is used (Anderson 

1995):  
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In our previous work (Savovic et al. 2014a), we 

have determined frequency response and bandwidth of 

the low numerical aperture (NA=0.3) SI POF for a 

Dirac impulse in time and a laser mode distribution 

with the o
0 0   (central launch) and FWHM =7.5° in 

the parallel plane. In this work, using Gloge’s 

analytical solution of (2) and our numerical results for 

(2) we calculate the frequency response and bandwidth 

of same SI POFs for a Dirac impulse in time and a 

laser mode distribution with the 
o

0 0   and FWHM 

=16° in the parallel plane and compare obtained 

analytical to numerical results. 

3. ANALYTICAL AND NUMERICAL RESULTS  

In this section we present results for frequency 

response and bandwidth of the tested MH4001 ESKA 

Mitsubishi Rayon fiber (MH fiber). The fiber`s 

dimensions are typical for this kind of fiber. Core and 

clad diameters are dcore=980 μm and dclad=1000 μm, 

respectively. Numerical aperture is NA=0.3, core 

refractive index is n=1.49, and critical angle 

isc =11.7
o
 (measured inside the fiber) or c =17.6

o
 

(measured in air). The number of modes in this step-

index multimode plastic optical fiber at λ=660 nm is 

N=2π
2
a

2
(NA)

2
/λ

2
1.02×10

6
, where a is radius of the 

fiber core. This large number of modes may be 

represented by a continuum as required for application 

of equation (2). 

In recently published works (Savovic et al. 2014a), 

(Savovic et al. 2014b), coupling coefficient D and loss 

coefficient ( )   (()
2

0  A ) for this fiber were 

calculated as D=1.62×10
3

 rad
2
/m and α0=0.10793 
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1/m and A=0.29166 (rad
2
 m)

–1
. The lengths of the 

MH4001 fiber that we used in our calculations were 3 

m, 5 m, 10 m, 15 m, 25 m, 50 m and 100 m. A Dirac 

impulse in time and mode distribution with the 0 =0
o
 

(central launch) and FWHM=16
o
 in the parallel plane 

were used for the input. Analytical and numerical 

results for the frequency response for different fiber 

lengths of the MH fiber are shown in Figure 1. 

Analytical and numerical results match well. A 

pronounced drop at low frequencies is apparent for 

long fiber lengths. Fig. 2 shows analytically and 

numerically obtained bandwidth for MH4001 fiber. 

Bandwidth is shown in log-log scale versus length of 

the fiber.  Slightly lower values of bandwidth are 

observed than in the case of the narrower beam with 

FWHM=7.5
o
 previously investigated by (Savovic et al. 

2014a). This is more pronounced for shorter fiber 

lengths and it is due to the excitation of higher order 

modes when fiber is excited with wider input light 

beam. Higher modes experience higher loss since at 

shorter fiber lengths dominant process is mode-

dependent attenuation. With increasing fiber length 

mode coupling begins to significantly influence fibers 

frequency response and bandwidth. In that case 

influence of the width of the launched beam on the 

fiber bandwidth becomes negligible since process of 

mode coupling at those lengths is either finished or 

came near end. 

 

Fig. 1 Analytical (dashed line) and numerical (solid 

line) results for the frequency response for MH fiber, 

for different fiber lengths. 

 

 

Fig. 2 Analytical (dashed line) and numerical (solid 

line) results for the bandwidth for MH fiber, for 

different fiber lengths. 

4. CONCLUSION   

Analytical and numerical solution of time-

dependent power flow equation were employed to 

calculate frequency response and bandwidth of 

MH4001 step-index optical fiber.  Obtained results 

show good match. Moreover if our results are 

compared to previously obtained results for the same 

fiber, but different input conditions (narrower width of 

input light beam) (Savovic et al., 2014a), expected 

results are obtained. Namely, frequency response (and 

consequently bandwidth) obtained for the input light 

beam with FWHM=16
o
 (this paper) show slightly 

lower values than in the case of the narrower beam 

with FWHM=7.5
o
 previously investigated by (Savovic 

et al. 2014a). This is more pronounced for shorter 

fiber lengths where mode-dependent attenuation is 

dominant process. With increasing fiber length mode 

coupling begins to significantly influence fibers 

transfer characteristics, that is frequency response and 

bandwidth. Namely, influence of the width of the 

launched beam on the fiber`s frequency response and 

bandwidth, is more pronounced at shorter fiber lengths 

(Savovic et al., 2010), leading to lower values of 

frequency response and bandwidth and becomes 

negligible at longer fiber lengths. 
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