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ABSTRACT 

In this paper, the light beam propagation 

through one-dimensional photonic lattice, 

possessing one nonlinear defect and one linear 

defect, has been investigated numerically. Different 

dynamical regimes have been identified in terms of 

the distance between the two defects, position of 

the incident light beam, the width of linear defect, 

the values of nonlinearity and presence of the 

transverse kick. Strong localized modes on the 

defects, breathing and zig-zag modes in the area 

between defects have been observed. It has been 

concluded that the width of the linear defect placed 

next to the nonlinear one influences localization of 

the beam at the nonlinear waveguide. On the other 

hand, the nonlinear defect, regardless of the values 

of nonlinearity, have a small influence on the beam 

propagation in photonic lattice. It has been 

observed that the transverse kick of the initial 

beam leads to the distortion of localized structures. 

By launching the light beam towards defects, the 

reflection of light has been noticed. Presented 

results can be useful for different applications, such 

as blocking, filtering and routing of light beam 

through optical media. 
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1. INTRODUCTION 

Photonic lattices (PL) represent special kind of 

photonic crystals which consist of periodic arrays of 

waveguides (WGs) closely spaced to provide weak 

coupling between neighboring WGs through their 

evanescent fields. PLs offer the possibility to control 

the light beam by changing the system parameters, 

such as refractive index and period of the lattice. Due 

to their properties and structure, they represent 

suitable systems for investigation of the wave 

propagation in periodic systems (Denz et all., 2010) 

and visualization of different effects such as discrete 

diffraction (Christodoulides et al., 1988), Fano 

resonance ((Miroshnichenko et all., 2010), (Naether et 

al., 2009)), Anderson localization ((Lahini et al., 

2008), (Schwartz et al., 2007)), etc. In PLs, different 

defects can appear in the process of their fabrication, 

but nowadays, they can be made intentionally and used 

in attempts to control the light beam propagation 

((Noda et al., 2007), (Tran, 1997)). Defects in PL can 

be formed by changing the value of refractive index in 

certain WG or by changing the width of the WG or the 

distance between WGs ((Meier et al., 2005), 

(Morandotti et al., 2003)). These defects destroy the 

translation symmetry of the system but, at the same 

time, they enable the existence of different stable, 

localized modes ((Beličev et al., 2010), (Fedele et al., 

2005), (Molina et al., 2008)). Recently, the influence 

of nonlinear defect (ND) on the light beam 

propagation in one-dimensional (1D) linear uniformed 

lattice has been investigated (Kuzmanović et al., 

2015a) as well as the influence of linear defect (LD) 

and interface defect on the beam dynamics (Stojanović 

Krasić et al., 2016). 

 In this work, we investigate numerically light 

beam propagation through uniform, 1D PL possessing 

one linear and one nonlinear defect. The paper is 

organized in the following way. Mathematical model 

of wave propagation through the system is formulated 

in Section 2. By changing the initial position of the 

beam with respect to the position of the ND and LD, 
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the width of LD and incident angle of the light beam, 

different regimes have been obtained and these 

numerical results are presented and discussed in 

Section 3. In Section 4, the conclusions have been 

briefly summarized. 

2. MODEL EQATIONS 

We consider the PL which consists of the linear 

WG arrays with embedded one nonlinear WG (i. e. 

nonlinear defect) and one linear defect (Figure 1).   

 

 

Figure 1. Schematic representation of the system. 

Blue line shows the position of the nonlinear defect, 

while the red line denotes the position of the linear 

defect. 

Light propagation in the lattice has been modelled 

by the paraxial time-independent Helmholtz equation 

(Kuzmanović et al., 2015a): 
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where z is the propagation amplitude,  zxE ,  

represents the component of the light electric field in 

the z-direction,  /20 k  is the wave number, 
0n is 

the refractive index of the substrate, whereas   marks 

the wavelength of the incident beam. The lattice 

contains 49 WGs on the left and 49 WGs on the right 

of ND in the x (transverse) direction. The stationary 

profile of refractive index of the lattice is given by the 

following equation: 

     xnxnxn nll  ,                        (2) 

where  xnl
 represents the linear part of the refractive 

index and  xnnl
 is local nonlinear term. Linear part of 

the refractive index is defined in a form: 
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where n  is the value of lattice potential, k is the 

position of the LD which is arbitrary placed in the 

lattice, N is the total number of WGs in the lattice. 

Parameter gw  marks the width of the WGs, whereas 

gkw represents the width of the LD. Functions 

 xswG gj ,,  represent Gaussians corresponding to the 

lattice WGs, whereas function  xswG kgkk ,,  

corresponds to the LD. 

Nonlinear part of the refractive index locally 

induced at one WG is defined in a form: 
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where
pE  is component of the light electric field, r is 

electro-optic coefficient,   is the Kronecker delta 

symbol and 
dI  is dark irradiance ((Chen et al., 2005), 

(Smirnov et al., 2006)). Dark irradiance is the 

parameter of the material proportional to the number 

of thermally generated photons in non-lighted 

material. 

Introducing dimensionless variables xk0  and 

zk0 , the equation (1) can be written in the 

following dimensionless form: 
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The light propagation across the lattice is initiated 

by the Gaussian shaped incident beam with the 

FWHM of the order of the width of the lattice 

WGs, and simulated numerically by the split – step 

Fourier method (Radosavljević et all., 2014). The 

intensity of the incident light beam, with a 

wavelength 5.514 nm is kept at fixed value, 

whereas the position of the injection with respect 

to the defect position, its transverse tilt α and the 

nonlinearity and the width of LD are changeable 

parameters.
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3. RESULTS AND DISCUSSION 

In the PL with ND and LD, qualitatively different 

dynamical behaviour has been observed in comparison 

to the previously investigated cases with one ND 

located in the uniform lattice (Kuzmanović et al., 

2015a) or with one geometrical defect and LD in the 

composite system (Kuzmanović et al., 2015b). The 

width of the LD is either 2 or 6 μm and further in the 

paper they will be marked as narrow and wide defect, 

respectively. The width of the WG within the lattice is 

wg = 4 µm and the distance between neighboring WGs 

is s = 4 µm. ND is fixed in the middle of the lattice 

and its position does not change, whereas the position 

of LD is changeable. The nonlinearity strength of ND 

has been taken to be Г = 1.3 or 10.  

Since the aim of this research is to investigate the 

common influence of the LD and ND on the beam 

propagation, we will start with analyzing the case in 

which the LD is placed next to the ND, in the first WG 

to the right of it. The width of LD has been varied as 

well as the values of nonlinearity of the ND. If regime 

possesses 10% of the amplitude value we have 

claimed that regime existed. In Figs. 2-7. amplitude of 

refractive index of modulation has larger values on 

narrow LD than in the case of wider. Linear part of 

refractive index of modulation is highly dependent of 

geometry of the system. Hence, changing of the width 

of WGs or the width of the separation between WGs, 

will lead to the formation of different amplitude of 

refractive index. It is shown, by number of numerical 

simulations, that narrow LD forms larger value of 

amplitude of refractive index of modulation than wider 

one.  

It can be seen that in this case when the light beam 

is launched into the ND, the width of LD influences 

the localization of the light on the ND, Figure 2a. 

Namely, the narrow LD is better potential barrier than 

the wide one and the light beam is localized 

completely on the ND. The efficiency of capturing the 

beam depends on the values of nonlinearity and in the 

case of higher nonlinearity, capturing effect is very 

weak, almost not noticeable (Fig.2c). In the case when 

the LD 6 μm wide is placed next to the ND in which 

the beam is initiated breathing mode between two 

neighbouring WGs is formed. One component of the 

breathing mode is placed at the nonlinear WG whereas 

the other is located at the adjacent LD, Fig.2b. For 

higher nonlinearity strength one can observe light 

scattering and absence of energy localization, Fig.2d. 

 

Fig. 2. 2D plot of the average beam intensity profiles, 

LD is located at the 1
st
 wg on the right of the ND, 

incident beam enters the ND: (a) nonlinearity strength 

of ND is Г=1.3, width of LD is 2 μm; (b) Г=1.3, width 

of LD is 6 μm; (c) Г=10, width of LD is 2 μm; (d) 

Г=10, width of LD is 6 μm. Blue line shows the 

position of the nonlinear defect, while the red line 

denotes the position of the linear defect. 

If the beam is inserted into the LD which is next to 

the ND, one can observe that the strength of 

nonlinearity have a small influence on the beam 

propagation in the LD, Fig. 3. The width of LD has the 

dominant influence on the beam propagation. When 

the beam enters the narrow LD positioned next to the 

ND, the beam is strongly localized at the position of 

LD regardless of the strength of ND, (Figs. 3a,c). 

 

Fig. 3. 2D plot of the average beam intensity profiles, 

LD is located at the 1
st
 wg on the right of the ND, 

incident beam enters the LD: (a) Г=1.3, LD is 2 μm 

wide; (b) Г=1.3, width of LD is 6 μm; (c) Г=10, width 

of LD is 2 μm; (d) Г=10, width of LD is 6 μm. Blue 

line shows the position of the nonlinear defect, while 

the red line denotes the position of the linear defect. 
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If the beam is launched into the wide LD (Fig. 3b), 

localized mode has a smaller amplitude than in the 

case when the light has been inserted into the narrow 

LD. Here, one can see that higher nonlinearity strength 

of the ND (Fig. 3d) will slightly improve localization 

on LD. 

We have investigated the influence of the 

transverse kick of the input beam on its propagation 

through the system. For lower values of the kick (α≤ 

2π/30), if the beam is launched from the left towards 

the ND (Γ=1.3) with LD 2 µm wide placed next to it, 

on the side opposite to the input beam, it is possible to 

obtain mild capturing of the beam at the position of 

ND and partial reflection from it (Figure 4a). For a 

wide LD, this capturing at the ND has not been 

observed, Figure 4b. For narrow LD and higher 

nonlinearity (Г = 10) beam launching at same position 

(left towards ND) leads towards beam capturing at ND 

position. However, for wide LD and same nonlinearity 

(Г = 10) reflection of the light at position left of ND is 

dominant process. Light reflection becomes dominant 

process no matter from which side (left from ND or 

right from LD) the input beam is launched into the 

lattice.  

 

Fig.4 2D plot of the average beam intensity 

profiles, LD is located at the 1
st
 wg on the right of the 

ND, α=2π/30: (a) incident beam enters the 1
st
 wg on 

the left of the ND, Г=1.3, width of LD is 2 μm; (b) 

width of LD is 6 μm, Г=1.3; (c) incident beam enters 

the 1
st
 wg on the right of the LD, Г=10, width of LD is 

2 μm; (d) width of LD is 6 μm, Г=10. Vertical blue 

dashed line denotes the ND, while vertical red line 

shows LD. 

For nonlinearity strength Г=10 and the same low 

values of the kick when the beam is launched towards 

the narrow LD, weak capturing at the position of the 

LD has been obtained, Figure 4c. Greater width of LD 

contributes to more efficient trapping of the beam at 

the LD, Figure 4d. Partial reflection is visible here as 

well. The higher value of the transverse kick leads to 

the decrease of the reflection and mild capturing of 

energy at the ND, transmission begins to appear as 

well. Transmission, in the presence of the kicks that 

are big enough (2π/6 to 2π/12), becomes the only 

effect which appears for the given values of the 

parameters. When defects are more distant and with 

beam launched in the cavity that’s placed between ND 

and LD, incidence angle of the beam affects its 

capturing and its zig-zag modes. Cavity is the formed 

area between ND and LD, when they are separated by 

at least one WG. If the beam is launched outside the 

cavity, light reflection becomes dominant process.  

The increase of the distance between the defects 

leads to the cavity formation in which the localization 

of energy can appear. This is illustrated in Figures 5а, 

b, c where the LD is located at the second WG on right 

of the ND. Trapping of the light is observed when the 

light is launched into the ND, Fig. 5a. When the beam 

is launched in the wg between the two defects, i. e. in 

the cavity, it becomes captured in it and this is due to 

potential barriers which appear as a consequence of 

defects’ presence on the right and left side, it can 

capture the light efficiently now, Figures 5b, c. By 

comparing these two figures it can be concluded that 

the width of the LD has no impact on the efficiency of 

capturing the light in the cavity. Efficiency of 

capturing means the ratio between the amplitude of the 

light, captured within the region between the defects or 

at the positions of the defects, and amplitude of the 

input light beam. Since the effects of only linear and 

only ND on the beam propagation through the lattice 

have already been investigated (Kuzmanović et al. 

2015a), by comparing those results with ones obtained 

here, it can be seen that capturing of the light in the 

LD located at the second WG from nonlinear one is 

equivalent to the one obtained when only LD has been 

investigated, Figure 5d, e. The light of capturing in the 

LD  has been observed for narrow and wide LD, when 

the light beam has been launched into the LD. ND has 

a small influence on the formation of localized mode. 

For greater distances between the ND and LD, it is 

possible to obtain multicomponent breathing modes in 

the cavity. In Figure 6, two-component breathing 

modes and the influence of the closeness of either of 

the two defects on these modes have been 

shown.There are no significant qualitative nor 

quantitative differences on the light beam propagation 

whether the light beam is launched near the narrow LD 

or near the wide LD within the cavity, Figures 6a and 
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6c. In both cases, two-component breathing mode is 

formed in the cavity between the defects. However, if 

we replace the narrow LD with the wide one, the two 

cases will be slightly different, Figures 6b and 6d. In 

this case, the breathing-mode component closer to the 

wide LD (the beam is launched in the cavity, in the 

WG adjacent to the LD) will be more pronounced than 

the one adjacent to the ND. 

 

Fig. 5. 2D plot of the average beam intensity profiles, 

LD is located at the 2
nd

 wg on the right of the ND: (a) 

Г=1.3, incident beam enters the ND, width of LD is 2 

μm;(b) Г=10, incident beam enters the 1
st
 on the right 

of the ND, width of LD is 2 μm (c) Г=10, incident 

beam enters the 1
st
 on the right of the ND, width of LD 

is 6 μm, (d) Г=10, incident beam enters the LD 2 μm 

wide; (е) Г=10, incident beam enters the LD 6 μm 

wide. Vertical blue dashed line denotes the ND, while 

vertical red line shows LD. 

 

Fig. 6. 2D plot of the average beam intensity profiles, 

Г=10, LD is located at the 3
rd

 wg on the right of the 

ND: (a) incident beam enters  the 1
st
 wg on the right of 

the ND, width of LD is 2 μm; (b) incident beam enters 

the 2
nd

 wg on the right of the ND, width of LD is 2 

μm; (c) incident beam enters the 1
st
 wg on the right of 

the ND, width of LD is 6 μm; (d) incident beam enters 

the 2
nd

 wg on the right of the ND, width of LD is 6 

μm. Vertical blue dashed line denotes the ND, while 

vertical red line shows LD. 

In the area between the ND and narrow LD, if the 

light is launched in the middle of the cavity it is 

possible to obtain symmetric – like structures because 

at the first sight they look symmetric but further 

analysis shows that they not, Figures 7, a, b. For 

smaller distances between the defects (three WGs or 

28 µm) (Figure 7a), there is a dominant central mode 

whereas for greater distances, this central mode is no 

longer dominant (Figure 7b, d). Central mode is the 

one located at the center of the distance between the 

LD and ND. In the case of the LD 6 µm wide, it is not 

possible to obtain symmetrical structures irrespective 

of the distance between defects, Figure 7e. This means 

that the potential of the wide LD cannot balance the 

potential of ND, thus enabling the formation of 

symmetrical structure. It is possible to obtain zig-zag 

modes as well, when the beam is launched at the WG 

near the one or the other defect, Figure 7c. 

Fig. 7. 2D plot of the average beam intensity profiles, 

Г=10, width of LD is 2 μm: (a) incident beam enters 

the 2
nd

 wg, LD is located at the 4
th

 wg; (b) incident 

beam enters the 3
rd

 wg, LD is located at the 6
th

 wg; (c) 

incident beam enters the 1
st
 wg, LD is located at the 

10
th

 wg; (d) incident beam enters  the 5
th

 wg, LD is 

located at the 10
th

 wg; (e) incident beam enters the 5
th

 

wg, LD 6 μm wide is located at the 10
th

 wg on the 

right of the ND. Vertical blue dashed line denotes the 

ND, while vertical red line shows LD. 

5. CONCLUSION 

The influence of ND and LD on the light beam 

propagation through 1D PL is investigated 

numerically. LD represents a WG which is narrower or 

wider than the rest of the WGs in the array. For narrow 

LD, when the beam is launched without the transverse 

kick, the total localization of the light on either of the 

defects has been observed. The narrow LD is more 

efficient in the localization of the light at the ND when 

they are located next to each other. On the other hand, 

the significant influence of ND on the beam 
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propagation in this system is not observed. The 

localization of the light is stronger at the narrow LD 

and for smaller nonlinearity strength. The influence of 

ND and LD on the light propagation in the area 

between them has also been investigated. Changing the 

initial parameters such as the initial position of the 

light beam, incident angle, strength of ND and the 

width of LD, different regimes of light propagation 

have been identified: localized modes, symmetrical 

breathing structures and symmetric – like zig-zag 

modes. The results presented here can be useful for 

all-optical control of the wave transmission in 

interferometry.  
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