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ABSTRACT 

In this paper the efficiency of accelerated gradient descent methods regarding the way of determination of 

accelerated factor is considered. Due to the previous researches we assert that the use of Taylor’s series of posed 

gradient descent iteration in calculation of accelerated parameter gives better final results than some other 

choices. We give a comparative analysis of efficiency of several methods with different approaches in obtaining 

accelerated parameter. According to the achieved results of numerical experiments we make a conclusion about 

the one of the most optimal way in defining accelerated parameter in accelerated gradient descent schemes.  
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INTRODUCTION 

We

 analyze nonlinear optimization methods for the 

minimizat ion of an objective function f: 
n → : 

min ( ), nf x x                                 
(1) 

In this paper we suppose that f is uniformly convex and  

twice continuously differentiab le function. For these classes of 

functions, furthermore we adopt the next often used 

representation of optimization models:  

1k k k kx x t d  
                                   

(2) 

where xk+1 denotes the function value in the next iterative point, 

xk presents the function value in the current iteration, tk is the 

iterative step size value and dk is the search direction vector. 

Since the first methods for solving non-linear min imization  

problems have been developed it was clear that the two main  

characteristics of these iterations: the step length and the search 

direction (parameters tk and dk in (2)) crucially determine 

accelerated features of the optimization method. Therewith, we 

expect the value of an iterative step size to be optimal at the 

sense that it is not too high to misses out the minima and at the 

same time not too small to provide unnecessary high number of 

iterations. In order to obtain the minimal value of the objective 

function we assume that the search direction vector fulfills the 

descent condition: this paper we suppose that f is uniformly  

convex and:  

0,T

k kg d   

where with gk we denote a gradient of the objective function in 

the k − th iteration.  
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THEORETICAL PART 

One of the first choices for descending search direction 

vector, which satisfies the previous condition, is proposed in 

classical gradient descent method (GD method). In this iteration  

dk = −gk. This is the one of the oldest iterations for solving 

nonlinear optimization problems. Theoretically, GD method has 

good convergence properties. In practical sense GD iterat ion is 

very slow and not really useful for the problems with large 

number of variables. In order to prevent these disadvantages  but 

at the same time conserving the descending property  of the 

negative gradient, some authors developed iterative gradient 

descent schemes more efficient in practical usage than GD 

method (Fletcher & Reeves , 1964; Polak & Rib iére, 1969;  

Polyak, 1969).  

1k k k k kx x t d  
                                

(3) 

where the acceleration parameter θ k is calculated as θk = ak/bk. 

Here ak = tkgk
T
gk, bk = −tkyk

T
gk and yk = gk+1 − gk. The value of 

iterative step-length tk is derived using backtracking line search 

procedure. This iteration is noted as AGD-method. The AGD 

method is compared with gradient descent GD-method. In 

numerical experiments, obtained for 340 test problems, notably 

better results in favor to the AGD scheme are registered. The 

analyzed characteristics are the number of iterations, the CPU 

time and the number of function evaluations. Regarding all three  

tested properties, the AGD iteration has provided considerably  

reduction of measured values comparing to the GD scheme.  

Considering the obtained results from Andrei (2006) in  

Stanimirovic & Miladinovic (2010) the authors identify a class 

of accelerated gradient descent methods. On their opin ion all 

gradient descent schemes with somehow defined accelerated 

factor belong to this class of methods. They have offered their 

way of deriving accelerated factor and described it in 

(Stanimirovic & Miladinovic, 2010). For that purpose they have 

constructed accelerated gradient descent SM-method as next:  
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1k k k k kx x t d 

                                
(4) 

To define an accelerated factor, noted in (4) as γk, the 

authors used a Taylor’s expansion of the objective function fk+1:  

 1 2 1 2 1

1

1
( ) ( ) ( )

2

T
T

k k k k k k k k k k kf x f x t g g t g f g     

    
 
(5) 

where ξ ∈ [xk, xk+1] is a point: 

  1

1 , 0 1k k k k k k kx x x x t d    

      
         

(6) 

Hessian ∇2 f (ξ) in (5) is rep laced by ∇2 f (ξ) = γk+1I, 

which transforms expression (5) into: 

2 21 2 2

1 1

1
( ) ( )

2
k k k k k k k k kf x f x t g t g   

   
          

(7) 

From the previous relation arises the value of the 

accelerated parameter γk+1 of the SM-method:  

2

1

1 22
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k k

f x f x t g

t g
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
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

 


                 
(8) 

Linear convergence for so defined SM iterat ion is proven as  

well as improvements in performances comparing to the GD and 

AGD- methods. Achieving a reduction in number of iterations, 

CPU time and in number of function evaluations in comparison 

with GD scheme was expected. But prominently reduction of 

resulted values achieved by the SM-method in all three tested 

characteristics compered to the accelerated AGD iteration leads 

us to conclusion that defining an accelerated parameter using the 

Taylor’s expansion gives better practical results. 

Later on in (Petrovic & Stanimirovic 2014; Petrovic 2015;  

Stanimirovic et al., 2015) authors use a favorable results from 

Stanimirovic & Miladinovic (2010) and continue to explore the 

way of defining an accelerated parameter using the Taylor’s 

expansion and different forms of iterat ions for solving nonlinear 

unconstrained optimization problems. For this investigation we 

consider results from (Petrovic, 2015). In Petrovic (2015), an  

iteration with two step lengths, αk and βk is presented as:  

 1

1k k k k k kx x d  

   
                           

(9) 

Using the Taylor’s expansion applied on a scheme (9) and 

an approximation of Hessian in a current iterative point by the 

product γk+1 I where an accelerated parameter γk+1 is included, the 

value of accelerated factor of the ADSS-method in (k  + 1)-

iterative point is: 

 

 

21

1

1 2 21

( ) ( )
2

k k k k k k

k

k k k k

f x f x g

g

  


  








  



         

 (10) 

 Like in Stanimirovic & Miladinovi (2010) we assume that 

γk+1 > 0 otherwise the Second-Order Necessary Condition and 

Second-Order Sufficient Condit ion will not be fulfilled. 

However, in the case when γk+1 < 0 we take γk+1 = 1. This way we 

ensure that when Gk is not positive definite matrix than taking 

γk+1 = 1 produces that the search direction is −gk and that is a 

descent direction indeed. The next iterative point xk+2 is then 

calculated as:  

 1

2 1 1 1 1 1k k k k k kx x d  

         

which presents an accelerated gradient descent iteration. In all 

three mentioned accelerated gradient descent models (AGD, SM, 

ADSS) the values of iterative step sizes are computed by the 

Armio’s backtracking line search procedures which is generally  

described through the next three steps. Applying the SM and the 

ADSS methods linear convergence is proven on the set of 

uniform convex functions and under additional assumptions for 

the strictly convex quadratics as well. Algorithms (0.2) and (0.3) 

display the SM and the ADSS accelerated models respectively.  

 

Algorithm0.1The backtracking line search starting from t = 1. 

Require: Objective function f (x), the direction of the search 

(dk) at the point xk and numbers 0 < σ < 0.5 and β ∈ (0, 1). 

1: t = 1. 

2: While f (xk + tdk) > f (xk) + σtgk
T
dk, take t := tβ. 

3: Return tk = t. 

 

Algorithm0.2 SM-method. 

Require: Objective function f(x) and chosen initial point x0 ∈ 
dom( f ). 
1: Set k = 0 and compute f (x0), g0 = ∇f (x0) and take γ0 = 1. 

2: If test criteria are fulfilled then stop the iteration; otherwise, 

go to the next step. 

3: (Backtracking) Find the step size tk ∈(0,1] using 

Backtracking procedure with dk = −γk 
−1

 gk. 

4: Compute xk+1 = xk − tk γk 
−1

 gk., f (xk+1) and gk.+1 = ∇f (xk+1).  

5: Determine the scalar approximation γk  +1 of the Hessian of 

f at the point xk+1 using (8).  

6: If γk +1 < 0, then take γk +1 = 1. 

7: Set k := k + 1, go to the step 2. 

8: Return xk+1 and f (xk+1). 

 

Algorithm0.3 Accelerated Double Step Size method  (ADSS 

method). 

Require: 0 < ρ < 1, 0 < τ < 1, x0, γ0 = 1. 

1: Set k = 0, compute f (x0), g0 and take γ0 = 1. 

2: If kg  < ξ, then go to Step 9, else continue by the next 

step. 

3: Find the step size αk apply ing Backtracking1 procedure.  

4: Find the step size βk applying Backtracking2 procedure.  

5: Compute xk+1 using (9). 

6: Determine the scalar γk+1 using (10). 

7: If γk+1 < 0, then take γk+1 = 1. 

8: Set k := k + 1, go to Step 2. 

9: Return xk+1 and f (xk+1). 
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NUMERICAL COMPARATIONS 

In Stanimirovic & Miladinovic (2010) authors have tested 

30 test functions from Andrei (2008) g iven in generalized or 

extended form as a large scale unconstrained test problems. They 

considered for each test function 10 different nume rical 

experiments with the number of variables: 100, 500, 1000, 2000, 

3000, 5000, 7000, 8000, 10000 and 15000. A substantial 

outcome of these numerical experiments is that the SM method 

shows the best results for 20 test functions in the sense of 

number of iterations needed to achieve requested accuracy, while 

AGD is the best in the remaining 10 test problems. Considering 

the CPU time and the number of function evaluations, the SM 

method shows better performance for 23 test functions. 

Since the both of the methods, the SM and the AGD,  

belong to the class of accelerated gradient descent methods we 

can conclude that computing an accelerated variable using the 

Taylor’s expansion provides a far better practical results in 

reducing the number of iterations, the number of function 

evaluations and needed CPU time. That was the reason to 

continue with this way of computing the parameter of 

acceleration. The similar approaches are applied in (Petrovic & 

Stanimirovic, 2014; Petrovic, 2015; Stanimirovic et al., 2015). In  

this work we consider results published in Petrovic (2015).  

Table 1. Summary of numerical results for SM and ADSS tested 

on 25 large scale test functions regarding number of iteration.  

Test function Nomber of iterat ions 

 ADSS SM 

Extended Penalty  589  50 

Perturbed quadratic  111972  397 

Raydan-1  21125  34 

Diagonal 1  10417  37 

Diagonal 3  10574  49 

Generalized Tridiagonal -1   278  77 

Extended Tridiagonal -1  3560  70 

Extended Three Expon  164  40 

Diagonal 4  80  780 

Extended Himmelb lau  168  70 

Quadr. Diag. Perturbed  53133 393 

Quadratic QF1 114510  425 

Extended Quad. Penalty QP1 224  60 

Extended Quad. Penalty QP2  162  60 

Quadratic QF2  118801   60 

Extended EP1  68  40 

Extended Tridiagonal - 2 584  80 

Arwhead  10  64 

Almost Perturbed Quadratic  110121  397 

Engval1  185  70 

Quartc  190  70 

Generalized quartic  156  70 

Diagonal 7 90  2201 

Diagonal 8  96  2213 

Diagonal 9 11235 43 

Numerical tests presented in Petrovic (2015) confirm 

noticeably better performance of accelerated double step size 

ADSS method comparing to the accelerated gradient descent SM 

scheme with one step length parameter. This also lead us to 

conclusion that properly defined values of iterative step lengths 

(as well as the number of step sizes involved in method) 

substantially causes the level of efficiency of analyzed method. 

Table 2. Summary of numerical results for SM and ADSS tested 

on 25 large scale test functions regarding CPU time.  

Test function CPU  time 

 ADSS SM 

Extended Penalty  5  4 

Perturbed quadratic  1868  0 

Raydan-1  178  4 

Diagonal 1  116  0 

Diagonal 3  209 1 

Generalized Tridiagonal -1  2  0 

Extended Tridiagonal -1  35  0 

Extended Three Expon  1  0 

Diagonal 4  0 0 

Extended Himmelb lau  0 0 

Quadr. Diag. Perturbed  1193  1 

Quadratic QF1 2127  0 

Extended Quad. Penalty QP1 12  2 

Extended Quad. Penalty QP2  7  4 

Quadratic QF2  2544  1 

Extended EP1  1 0 

Extended Tridiagonal - 2 0 0 

Arwhead  0  3 

Almost Perturbed Quadratic  2148 0 

Engval1  7  0 

Quartc  0 0 

Generalized quartic  0 0 

Diagonal 7 0 33 

Diagonal 8  0 40 

Diagonal 9  118 0 

To confirm this ascertainment in this work the SM and the 

ADSS schemes are numerically compared and the numerical 

outcomes from Pet rovic (2015) are used. First, let us point it out 

on the common features of these two iterations: 

- Computation of accelerated factor for each of these 

models is achieved in a similar way, using the Taylor’s 

expansion and in accordance with the posed formulation 

of the iteration; 

- The value of the single step size in the SM is obtained 

by the Backtracking line search technique as well as 

each of the value of two needed step length parameters 

in the ADSS scheme;  

- Both methods have a negative gradient for the search 

direction, i.e. both methods are gradient descent. 

For each of the 25 test functions ten experiments are taken  

for the larger number of variables:1000, 2000, 3000, 5000, 7000, 

8000, 10000, 15000, 20000 and 30000. Analyzed characteristics 
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are number of iterations, needed CPU t ime of execution and the 

number of function evaluations. Taking the next exit criteria :  

16 6
( ) ( )

10 10
1 ( )

k k

k

k

f x f x
g and

f x

 


 


 

results are displayed in the following Tables 1, 2, 3.  

From the given Tables the next conclusions follows: 

- By using the ADSS scheme in 21 out of 25 test 

functions considerably lower number of iterat ions is 

realized then by using the SM scheme; 

- The ADSS iteration is faster than the SM for 17 

functions and for 5 test functions both methods need the 

same CPU time; which presents an accelerated. 

- By using the ADSS scheme in 20 out of 25 test functions 

much lower number of function evaluations is achieved 

then using the SM scheme. 

Expand view of the previous statements is given trough the 

average values, arranged in Table 4.  

Table 3. Summary of numerical results for SM and ADSS tested 

on 25 large scale test functions regarding number of evaluation..  

Test function No. of funct. evaluation 

 ADSS SM 

Extended Penalty  2987     1780 

Perturbed quadratic  632724  1714 

Raydan-1  116757  4844 

Diagonal 1  56135  1448 

Diagonal 3  59425  1048 

Generalized Tridiagonal -1  989  719 

Extended Tridiagonal -1  30686  420 

Extended Three Expon  1224  350 

Diagonal 4  530  2590 

Extended Himmelb lau  566  480 

Quadr. Diag. Perturbed  547850  1719 

Quadratic QF1 649643  1755 

Extended Quad. Penalty QP1 2566  841 

Extended Quad. Penalty QP2  2057  843 

Quadratic QF2  662486 836 

Extended EP1  764  487 

Extended Tridiagonal - 2 2144   420 

Arwhead  30 1082 

Almost Perturbed Quadratic  1712 1712 

Engval1  2177  460 

Quartc  430  390 

Generalized quartic  423  614 

Diagonal 7 220  6633 

Diagonal 8  594  6709 

Diagonal 9  60566  3646 

Generally, from 250 testings we can conclude that the 

ADSS outperforms the SM respect to all tested characteristics: 

number of iterations, CPU time and number of function 

evaluations. Considering the number of iterat ions, the ADSS 

exceeds  SM about 70 t imes. Needed CPU t ime is averagely  113 

times less in favor to ADSS comparing to SM and regarding 

function evaluations about 80 times lower number is  needed with  

regard to the SM. 

Remark 0.1. In Stanimirovic et al. (2015); Petrovic et al. 

(2016) two more accelerated gradient descent schemes with 

accelerated parameters derived from the features of the Taylor’s 

series are presented. Linear convergence of these methods and 

their numerical efficiency is proved and tested. All of these 

improved results that are mentioned or analyzed confirm that it 

is reasonable to detected a class of accelerated gradient descent 

methods with accelerated parameter obtained by the Taylor’s 

expansion of posed iteration. 

Table 4. Average numerical outcomes for 25 test functions tried 

out on 10 numerical experiments in each iterat ion..  

Average performances ADSS SM 

Number of iterat ions  314  22739.68 

CPU t ime (sec)  3.72  422.84 

Number of function 

evaluations 

1741.6 138450.4 

CONCLUS ION 

In this paper the efficiency of an accelerated gradient 

descent method with accelerated parameter achieved using the 

properties of the Taylor’s expansion is described and numerically  

proved. For that purpose we have pointed out on a different ways 

of defining a factor of accelerat ion. The results of the numerical 

tests in Stanimirovic  & Milad inovic (2010) which show the 

benefits of calculating the acceleration parameter trough the 

Taylor’s expansion instead of means stated in Andrei (2006), 

were the reason to continue investigation of developing  an 

accelerated parameter this way applied on a different form of a 

gradient descent iteration. 

Double step size gradient descent ADSS model proposed in 

Petrovic (2015), with all three crucial elements of iteration (an  

accelerated parameter, s tep sizes and search direction) similarly  

defined, is compared with the SM method. The efficiency of the 

ADSS model regarding all analyzed characteristics (number of 

iterations, CPU time and number of function evaluations) in 

comparison to the accelerated  gradient descent single step size  

SM method has been numerically confirmed.  

At the end we can indicate that the problem stated in this 

paper can be exploited in some new ways. More precisely, the 

problem of finding an accelerat ion parameter with some different 

forms of gradient descent iterations is still actual.   
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