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ABSTRACT

Stark full widths at half maximum of six 4s - 4p Sc IV spectral lines, broadened by collisions with electrons, have been
calculated for electron density of 1017 cm−3 by using the modified semiempirical method. The results are provided for
temperatures from 10 000 K to 160 000 K. They are used also to discuss the similarities of Sc IV spectral lines within
multiplet, supermultiplet and transition array. Obtained results will be included in the STARK-B database which is
also a part of Virtual atomic and molecular data center(VAMDC).
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INTRODUCTION

Broadening of spectral lines by fluctuating electric mi-
crofield produced by charged particles moving near an emit-
ter/absorber, known as Stark broadening, is important for many
topics in physics and astronomy. Data on Stark broadening are
needed for laboratory plasmas diagnostic and investigation (Kon-
jević, 1999; Torres et al., 2006; Peláez et al., 2009), laser produced
plasma analysis, modelling and diagnostics (Richou & Molitor,
1970; Gornushkin et al., 1999; Sorge et al., 2000; Seidel et al.,
2001) and inertial fusion plasma (Keane et al., 1990; Griem, 1992).
Stark broadening data are also useful in technology, as for exam-
ple for laser welding and piercing of various metals (Dimitrijević
& Sahal-Bréchot, 2014), design, investigation and improvement
of effectivity of various light sources based on plasma (Wieser
et al., 1997; Seidel et al., 2001), and the design and develop-
ing of lasers (Csillag & Dimitrijević, 2004; Dimitrijević & Sahal-
Bréchot, 2014). In many astrophysical plasmas Stark broadening
of spectral lines is very important or at least non negligible and
should be taken into account (Beauchamp et al., 1997; Popović
et al., 2001; Dimitrijević, 2003; Dimitrijević & Sahal-Bréchot,
2014).

Stark broadening data are particularly important for stellar
plasma research, and for analysis and synthesis of stellar spec-
tra (Beauchamp et al., 1997; Dimitrijević & Sahal-Bréchot, 2014).
In atmospheres of white dwarfs, pre white dwarf stars, and post
AGB(Asymptotic Giant Branch) stars this is usually the main
broadening mechanism (Tankosić et al., 2003; Milovanović et al.,
2004; Simić et al., 2006; Dufour et al., 2011). It can not be ne-
glected and in some atmospheric layers of A and late B stars
(Simić et al., 2005b,a, 2009). As an example, (Popović et al., 2001)
have shown that, for A-type star atmospheres, the inclusion of
Stark broadening can change the equivalent widths by 10-45%.

Consequently, for determination of abundances, the importance of
Stark broadening of analysed spectral lines should be checked.

For some astrophysical problems, like modelling of stel-
lar atmospheres, radiative transfer or derivation of accurate atmo-
spheric parameters, we need a very large number of various atomic
data, including Stark broadening (Dufour et al., 2011). We note as
well that (Rauch et al., 2007) emphasized the crucial importance
of an accurate and as much as possible complete Stark broaden-
ing data set for large number of atoms and ions, “for sophisticated
analysis of stellar spectra by means of NLTE model atmospheres”.

The development of satellite-born astronomy, enabling to
obtain stellar spectra with earlier not possible resolution, as well
as development of computers enabling very sophisticated NLTE
synthesis and modelling of stellar spectra, made that earlier as-
trophysically insignificant data on trace elements now are impor-
tant. Scandium is present and observed in stellar spectra (Adel-
man & Pintaldo, 2000; Adelman et al., 2001; Kahraman Alicavus
et al., 2017) so that its Stark broadening parameters are needed.
However, there is no at all experimental data for Stark broaden-
ing of scandium lines. For Sc IV there is no neither theoretical
data. Results of Stark broadening parameter calculations exist only
for Sc II (Popović & Dimitrijević, 1996, 1997), Sc III (Dimitrije-
vić & Sahal-Bréchot, 1992), Sc X (Dimitrijević & Sahal-Bréchot,
1998a,b; Elabidi & Sahal-Bréchot, 2011) and Sc XI (Dimitrijević
& Sahal-Bréchot, 1998a,b).

In order to provide the Stark broadening data, needed first
of all for stellar astrophysics, for Sc IV spectral lines, which are
absent completely in the literature, Stark Full Widths at Half inten-
sity Maximum(FWHM) W for six transitions have been calculated
here, by using the modified semiempirical method (MSE, Dimitri-
jević & Konjević (1980); Dimitrijević & Kršljanin (1986); Dim-
itrijević & Popović (2001)) for collisions of Sc IV ions with elec-
trons. The obtained results will be used for the discussion of simi-
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larities of Stark widths within a supermultiplet. Also, the obtained
results will be implemented in the STARK-B database (Sahal-
Bréchot et al., 2015, 2017), a repository for spectral line broad-
ening and shifts due to collisions with charged particles, and also
a node of Virtual Atomic and Molecular Data Center - VAMDC
(?Rixon et al., 2011; Dubernet et al., 2016).

THE MODIFIED SEMIEMPIRICAL METHOD

Within the frame of the modified semiempirical(MSE) ap-
proach (Dimitrijević & Konjević, 1980; Dimitrijević & Kršljanin,
1986; Popović et al., 2001) the electron impact full width at half in-
tensity maximum(FHWM) of an isolated non hydrogenic ion line
is given as
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In Eq.(1)

x`k ,`k′ =
E

∆E`k ,`k′

, k = i, f

E = 3
2 kT is the electron kinetic energy and ∆E`k ,`k′ = |E`k − E`k′ |

is the energy difference between levels `k and `k±1(k = i, f ),

xnk ,nk+1 ≈
E

∆Enk ,nk+1
,

where for ∆n , 0, the energy difference between energy levels
with nk and nk+1, ∆Enk ,nk+1 is approximated as

∆Enk ,nk+1 = 2Z2EH/n∗3k , (4)

n∗k = [EHZ2/(Eion − Ek)]1/2 is the effective principal quantum
number, Z is the residual ionic charge(charge “seen” by optical
electron; for example Z=1 for neutrals) and Eion is the appropri-
ate spectral series limit. N and T are electron density and tem-
perature, respectively and Q(`L, `′L′), Q(J, J′) multiplet and line
factors. With g(x) (Griem, 1968, 1974) and g̃(x) (Dimitrijević &
Konjević, 1980) are denoted the corresponding Gaunt factors. The
needed radial integrals [Rn∗k`k±1

n∗k`k
] have been calculated here within

the Coulomb approximation by using the method of (Bates &
Damgaard, 1949) and the tables of (Oertel & Shomo, 1968). We
note that if for the higher principal quantum numbers there is no
the corresponding data in (Oertel & Shomo, 1968), the radial inte-
grals may be calculated with the help of the article of (Van Rege-
morter et al., 1979).

RESULTS AND DISCUSSION

Stark widths(FWHM) of six Sc IV spectral lines, broadened
by collisions with electrons, have been calculated using Eqs.(1-4)
wihin the frame of MSE method (Dimitrijević & Konjević, 1980;
Popović et al., 2001). Energy levels and ionization energy needed
for their calculations have been taken from (Sugar & Corliss,
2004).

In Table 1, the results of our MSE calculations of Stark
widths(FWHM) for six spectral lines broadened by electron-
impacts, for a perturber density of 1017 cm−3 and for a set of tem-
peratures from 10 000 K to 160 000 K, are shown. The chosen
temperature range is of interest in astrophysics, laboratory plasma,
fusion research, technology and for lasers and laser produced
plasma. If one needs perturber densities lower than 1017 cm−3 the
extrapolation is linear. For higher perturber densities extrapolation
is linear if the influence of Debye screening is negligible or rea-
sonably small. In Table 1 are also given the observed wavelength
and the multiplet number from the NIST database (Kramida et al.,
2017). It is shown as well the quantity 3kT/2∆E, representing the
ratio of the average energy of free electrons, E = 3kT/2, and the
energy difference of initial or final and the closest perturbing level,
∆E. It is calculated for T=20 000 K in the following way:

∆E = Max[E/∆Ei,i′ , E/∆E f , f ′ ,∆Eni,ni+1,∆En f ,n f +1] (5)

This ratio shows which collisions are dominant. 3kT/2∆E =

1 is the threshold for the corresponding inelastic transition. If it is
lower than one, elastic collisions are dominant and it is so called
low temperature limit. If it is large, say larger than 50, high tem-
perature limit approximation can be applied.

The calculated triplets belong to the same 4s3Po-4p3S mul-
tiplet, singlets to the same 4s1Po-4p1L(L=S, P, D) supermultiplet
and all calculated transitions to the same, 4s-4p transition array.
(Wiese & Konjević, 1982) concluded after examination of regu-
larities and similarities in plasma broadened spectral line widths
that line widths in angular frequency units in multiplets usually
agree within a few per cent, in supermultiple within about 30 per
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Table 1. This table gives electron-impact broadening(Stark broadening) Full Widths at Half Intensity Maximum(W) for Sc IV spectral
lines, for a perturber density of 1017 cm−3 and temperatures from 10 000 to 160 000 K. Also are given multiplet numbers and wavelengths
from NIST database (Kramida et al., 2017) and 3kT/2∆E for T = 20 000 K, where ∆E is the energy difference between closest perturbing
level and the closer of initial and final levels.

Transition T(K) W[Å] W[1012 s−1]
Sc IV 3s23p54s1Po-3s23p54p1P 10000. 0.0735 0.294

(Mult. 100) 20000. 0.0519 0.208
2171.2 Å 40000. 0.0367 0.147

3kT/2∆E= 0.541 80000. 0.0260 0.104
160000. 0.0194 0.0776

Sc IV 3s23p54s1Po-3s23p54p1D 10000. 0.0802 0.337
(Mult. 101) 20000. 0.0621 0.260
2119.0 Å 40000. 0.0479 0.201

3kT/2∆E= 0.526 80000. 0.0399 0.167
160000. 0.0344 0.144

Sc IV 3s23p54s1Po-3s23p54p1S 10000. 0.0472 0.321
(Mult. 102) 20000. 0.0334 0.227
1665.9 Å 40000. 0.0240 0.163

3kT/2∆E= 0.453 80000. 0.0180 0.122
160000. 0.0146 0.0989

Sc IV 3s23p54s3Po
2-3s23p54p3S1 10000. 0.0964 0.271

(Mult. 85) 20000. 0.0682 0.192
2586.9 Å 40000. 0.0482 0.136

3kT/2∆E= 0.606 80000. 0.0344 0.0969
160000. 0.0272 0.0765

Sc IV 3s23p54s3Po
1-3s23p54p3S1 10000. 0.104 0.274

(Mult. 85) 20000. 0.0737 0.194
2678.0 Å 40000. 0.0521 0.137

3kT/2∆E= 0.606 80000. 0.0373 0.0980
160000. 0.0295 0.0774

Sc IV 3s23p54s3Po
0-3s23p54p3S1 10000. 0.125 0.279

(Mult. 85) 20000. 0.0886 0.197
2906.5 Å 40000. 0.0626 0.140

3kT/2∆E= 0.606 80000. 0.0451 0.101
160000. 0.0357 0.0797

cent and within a transition array within about 40 per cent. The ob-
tained here results give us an opportunity to check the similarities
of Stark line widths within multiplet, supermultiplet and transition
array for Sc IV in order to see if they could be used for derriva-
tion of missing values. The transformation of the Stark widths ex-
pressed in Å-units to the widths in angular frequency units may be
performed by the following formula:

W(Å) =
λ2

2πc
W(s−1), (6)

where c is the speed of light.
From Table 1 we obtained that within the Sc IV 4s3Po-

4p3S multiplet the smalest Stark width value is 2.87% smaller
from largest at T=10 000 K and 4.02% at T=160 000 K. Within
Sc IV 4s1Po-4p1L(L=S, P, D) supermultiplet, the smallest W is
12.76% smaller from the largest one at T=10 000 K and 46.11% at

T=160 000 K. For 4s-4p transition array these values are 19.58%
and 46.88%. We can conclude that in average, these values are in
agreement with (Wiese & Konjević, 1982) conclusions and that
disagreement increases with the increase of temperature.

If we have Stark width value for one member of multiplet,
supermultiplet or transition array, the needed width for another
member, can be obtained with the help of the expression:

W1 =

(
λ1

λ

)2

W. (7)

Here, with W1 is denoted the corrected width, for the spectral line
with the wavelength λ1, and λ is the wavelength of the line for
which we have the Stark width value W.

The Stark FWHM for Sc IV spectral lines obtained within
the modified semiempirical method and shown in Table 1, will be
also implemented in the STARK-B database (Sahal-Bréchot et al.,
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2015, 2017), created first of all for the investigations, modelling
and diagnostics of the plasma of stellar atmospheres,but useful
also for the diagnostics of laboratory plasmas, investigation of
laser produced and inertial fusion plasma as well as for plasma
technologies.

We want to draw attention that STARK-B database is one of
the databases which enter also in the Virtual Atomic and Molec-
ular Data Center - VAMDC (?Rixon et al., 2011; Dubernet et al.,
2016), created in order to enable an efficacious search and mining
of atomic and molecular data. scattered in different databases and
to make more convenient their adequate use. VAMDC portal with
30 databases with atomic and molecular data, including STARK-
B, is on the web site: http://portal.vamdc.org/.

CONCLUSION

Within the frame of MSE method we have calculated Stark
widths for six Sc IV spectral lines broadened by collisions with
electrons. The obtained data are used to check similarities of Stark
widths within a multiplet, supermultiplet and transition array. Also
the Stark widths for six Sc IV spectral lines will be implemented
in STARK-B database. Other theoretical as well as experimental
data for Stark broadening of Sc IV spectral lines do not exist, so
that we hope that the obtained results will be of interest, for vari-
ous problems, especially in stellar physics and laboratory plasma
diagnostics.
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