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HOMOTOPY PERTURBATIONS METHOD: THEORETICAL AS-
PECTS & APPLICATIONS
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ABSTRACT

The application of the homotopy perturbation method (HPM) in two different research’s area has been proposed in
this paper. First, the HPM has been used for approximate solving of the well-known implicit equation for electrostatic
surface potential of MOSFET transistor. The approximate analytical solution obtained in this case has relative simple
mathematical form, and simultaneously high degree of accuracy. Next, HPM has been applied in determination of the
invariant measures (IMs) of the non-linear dynamical systems with chaotic behavior. The convergence and efficiency
of this method have been confirmed and illustrated in some characteristic examples of chaotic mappings.
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INTRODUCTION

The homotopy perturbation method (HPM) belongs to the
general and powerful techniques for solving the nonlinear equa-
tions of various kinds. As a combination of the well - known ho-
motopy method in topology and classic perturbation techniques,
the HPM was first introduced in pioneer works of He (1999, 2000,
2003, 2006, 2008). After that, the extensive development and ap-
plication of this method to various fields of science researches
has been started. For instance, the HPM has been successfully
applied for obtaining analytic or approximate solutions of non-
linear differential and partial-differential equations (Biazar et al.,
2009; El-Sayed et al., 2012; Gadallah & Elzaki, 2017), as well as
Fredholm and Volterra integral equations (Hetmaniok et al., 2012,
2013; Dong et al., 2013). Furthermore, this method also has found
significant application in solving many kinds of real based prob-
lems, mainly in the physical sciences (Zeb et al., 2014; Kevkić
et al., 2017, 2018).

Let us emphasize that the HPM is increasingly being used
also in scientific fields, such as, for example, environmental pro-
tection and epidemiology (Khan et al., 2014; Adamu et al., 2017).
Thus, the wide variety of applications indicates to the flexibil-
ity and importance of this method. Finally, let us point out that
HPM has been improving, developing and modifying, until to the
present time. Consequently, today exist various solver techniques
that are based, to a greater or lesser extent, on the basic HPM as-
sumptions (Noor & Khan, 2012; Zhang et al., 2015; Tripathi &
Mishra, 2016; Bota & Caruntu, 2017). Here is given a brief theo-
retical background about the HPM and some sufficient conditions
to its convergence. Further, the HPM has been applied in two re-
search’s area, where still not observed its any significant applica-
tion.

As a novel approach, the HPM technique firstly has been ap-
plied for solving of the implicit relation between the electrostatic

surface potential of an n-channel MOSFET transistor with termi-
nal voltages. Approximate surface potential obtained in this way
shows relative simple mathematical form, and at the same times a
high degree of accuracy. Indeed, these properties of solution have
crucial importance from the physical as well as design point of
view. Further, the application of the HPM in determination of the
invariant measures (IMs) of the non-linear dynamical systems with
chaotic behavior has been investigated. For this purpose, the con-
vergence and efficiency of the HPM has been confirmed and illus-
trated with some characteristic examples of chaotic mappings.

METHODOLOGY OF THE HPM

For simple illustration of the basic concepts of HPM, we
consider the following nonlinear equation:

N
[
f (x)

]
= 0. (1)

Here, f : R → R is unknown function and N(·) is nonlinear oper-
ator defined on some functional domain Ω. In solving Eq. (1) by
using the HPM technique is assumed the introduction of homotopy
H : Ω × [0, 1]→ R such that, for an arbitrary u ∈ Ω:

H[u, 0] = L[u], H[u, 1] = N[u], (2)

where L[u] is a linear operator, defined on the same domain Ω.
More precisely, if denote with p ∈ [0, 1] the so-called embedding
parameter, then homotopyH can be defined as a function

H[u, p] = (1 − p)L[u] + pN[u], (3)

which obviously satisfies the both of Eqs. (2). According to this,
for the unknown function f (x), we can form the so-called homo-
topy equation:

H
[
f (x), p

]
= 0. (4)
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When p = 0, Eqs. (2)-(4) give the following linear equation:

L
[
f (x)

]
= 0, (5)

for which is assumed that has a unique solution f0(x), usually
called initial solution or initial approximation. On the other hand,
when p = 1 the same Eqs. (2)-(4) obviously give the nonlinear
Eq. (1).

The basic assumption of HPM is that general solution
F(x, p) of the homotopy Eq. (4) can be expressed as the power
series in p:

F(x, p) =

+∞∑
k=0

pk fk(x). (6)

From here, we get immediately F(x, 0) = f0(x) as the initial solu-
tion of linear Eq. (5), i.e. as the solution of homotopy Eq. (4) when
p = 0. On the other hand, the solution of the “main" Eq. (1), or
equivalently Eq. (4) when p = 1, will be:

f (x) = lim
p→1−

F(x, p) =

∞∑
k=0

fk(x). (7)

on the condition of convergence the series in Eq. (7). In this case,
according to Abel theorem, immediately follows:

Theorem 1. If series
∑∞

k=0 fk(x) converges, then function F(x, p)
is continuous from the left at p = 1, i.e. Eq. (7) holds.

Notice that, if the conditions of the previous theorem are
fulfilled, then series

∑∞
k=0 fk(x) represents the solution of the ho-

motopy Eq. (4) when p = 1, i.e., it is solution of the nonlinear
Eq. (1). Moreover, the solution f (x) of Eq. (1) can be estimated by
the so-called HPM-approximations:

f̂0(x) = f0(x),

f̂k(x) = f̂k−1(x) + fk(x) =

k∑
j=1

f j(x), k = 1, 2, . . .
(8)

Obviously, series
∑∞

k=0 fk(x) is a solution of Eq. (1) if and only
if the series { f̂k(x)} converges to the unknown function f (x). Suf-
ficient conditions for this convergence can be also given by the
following statement, which is a special case of Banach fixed point
theorem:

Theorem 2. Let Ω is Banach space with sup-norm || · || and the
series { fk(x)} defined on Ω. If for some α ∈ (0, 1) and k ≥ 1
the inequality || fk || ≤ α|| fk−1|| holds, then series { f̂k(x)}, defined
by Eqs. (8), uniformly converges to the unique solution f (x) of
Eq. (1).

Proof. According to assumptions of the theorem and Eqs. (8), for
an arbitrary k,m > 0 we have that:

|| f̂k+m − f̂k || ≤ || f̂k+m − f̂k+m−1|| + · · · || f̂k+1 − f̂k ||

≤ || fk+m|| + · · · + || fk+1||

≤ (αm + · · · + α) || fk ||

≤ αk+1 1 − αm

1 − α
|| f0||.

Thus, lim
k,m→∞

|| f̂k+m − f̂k || = 0, i.e. { f̂k(x)} is a Cauchy sequence in

Banach space Ω. It implies that { f̂k(x)} is uniformly convergent,
and its limit is uniquely determined by Eq. (7). �

In following will be describe some practical applications of
the aforementioned HPM methodology.

MODELING SURFACE POTENTIAL IN MOSFET TRAN-
SISTORS

The most of MOSFET transistor models are based on charge
sheet approximation and the incrementally linear relationship be-
tween the inversion charge density and the surface potential (van
Langevelde & Klaassen, 2000; Chen & Gildenblat, 2001). Their
combination gives following implicit relation between the surface
potential ψs and gate voltage VG:

VG − VFB − ψs = γ

√
ψs + uT exp

(
ψs − 2φF − Vch

uT

)
. (9)

where VFB is the flat band voltage, uT is the thermal voltage, φF is
Fermi potential, Vch is the channel potential and γ is the body fac-
tor defined by

√
2 q εS iNA/Cox. Here NA is acceptor concentration

in homogeneously doped channel and Cox = εox/tox is the oxide
capacitance per unit area, tox is the gate oxide capacitance per unit
area, as εox is the oxide permittivity.

Eq. (9) makes the base of all so-called surface potential
based (SPBM) MOSFET models which are the most accurate
physically based MOSFET models. However, it is obvious that Eq.
(9) can be solved with respect to ψs only numerically, what repre-
sent the main drawback of the SPBM from the design and physical
point of view. Note that, after some elementary transformations,
the Eq. (9) can be rearranged in the following, dimensionless form

A exp
(

y −C
uT

)
− y2 + (2x + γ2) y − x2 = 0, (10)

where A := γ2uT , x := VG − VFB, C := 2φF + Vch and y :=
ψs(x) is an unkown function. To find the (approximative) solution
of Eq. (10), we apply the HPM technique. Firstly, we construct the
homotopy equation

(1 − p)L
[
Y(x; p)

]
+ pN

[
Y(x; p)

]
= 0, (11)

where p ∈ (0, 1) is the embedding parameter, as

L
[
Y(x; p)

]
= Y(x; p) − f0(x)

is a linear part, and

N
[
Y(x; p)

]
= A exp

(
Y(x; p) −C

uT

)
−Y2(x; p)+(2x+γ2) Y(x; p)−x2

is a non-linear (“true") part of Eq. (10).
When p = 0 the homotopy Eq. (11) obviously becomes

L [Y(x; 0)] = 0, with the unique initial solution Y(x; 0) = f0(x).
Similarly, for p = 1, Eq. (11) becomes N [Y(x; 1)] = 0, and it is
equivalent to Eq. (10), with the “main" solution Y(x; 1) ≡ ψs(x).
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Now, according to aforementioned facts, solution of the ho-
motopy Eq. (11) can be expressed as the power series in p:

Y(x; p) =

∞∑
k=0

pk fk(x). (12)

From here, we get f0(x) := Y(x; 0) as the initial solution of the
Eq. (11), obtained for p = 0. On the other hand, the “main" solu-
tion of the Eq. (11), obtained for p = 1, will be

ψs(x) ≡ Y(x; 1) = lim
p→1−

Y(x; p) =

∞∑
k=0

fk(x). (13)

Thus, it represents the solution of the Eq. (10), on the condition of
convergence the series in (13).

Now, substituting Eq. (12) in the homotopy Eq. (11), and by
using Taylor’s expansion of the exponential term, we obtain

(1 − p)
+∞∑
k=1

pk fk(x) = p

A
∞∑
j=0

1

j! u j
T

 ∞∑
k=0

pk fk(x)

 j

−

 ∞∑
k=0

pk fk(x)

2

+B(x)
∞∑

k=0

pk fk(x) −C(x)

 ,
(14)

where we denoted B(x) := 2x + γ2 + 1 and C(x) := x2 + f0(x). By
equating expressions with the identical powers pk, k = 1, 2, . . . we
obtain the explicit expression of the functions { fk(x)}. They can be
expressed, recursively, with the following recurrence relations:

f1(x) = A exp
(

f0(x)
uT

)
− f0(x)2 + B(x) f0(x) −C(x),

f2(x) = A exp
(

f0(x)
uT

)
·

f1(x)
uT
− 2 f0(x) f1(x) + B(x) f1(x),

f3(x) = A exp
(

f0(x)
uT

)
·

 f2(x)
uT

+
f1(x)2

2u2
T

 − [
2 f0(x) f2(x)

+ f1(x)2
]

+ B(x) f2(x),

...

In the general case, by using the induction method, it can be easily
shown that, for k ≥ 2 and m! ≤ k < (m + 1)!, hold the following
equalities:

fk(x) = A exp
(

f0(x)
uT

)
·

m∑
j=1

1

j! u j
T

∑
i1+···+i j=k−1

fi1 (x) · · · fi j (x)

−

k−1∑
j=0

f j(x) fk− j−1(x) + B(x) fk−1(x). (15)

At last, the equalities above give the appropriate estimates of sur-
face potential y = ψs(x):

ψ̂(0)
s (x) = f0(x),

ψ̂(k)
s (x) = ψ̂(k−1)

s (x) + fk(x) =

k∑
j=1

f j(x), k = 1, 2, . . .

Figure 1. The HPM-approximations of the surface potential ψs(VG).

Fig.1 shows the surface potential versus gate voltage VG.
The convergences of the HPM-approximations are illustrated,
along with the numerically obtained solution of Eq. (9). For ini-
tial solution was used the the interpolation function:

f0(x) = ψwi(x) − uT log
[
1 + exp

(
ψwi(x) − 2φF − Vch

x

)]
, (16)

where

ψswi (x) =

−γ2 +

√
x +

γ2

4

2

(17)

is an approximation of the surface potential ψs in the so-called
weak inversion region (i.e. when ψs < 2φF + Vch). As it easily can
be seen, already for k ≥ 2, the HPM-approximations {ψ̂(k)

s (x)} give
precise approximations of the surface potential ψs(x).

DETERMINATION OF INVARIANT MEASURES

In the researching of nonlinear chaotic dynamical models
special attention is paid to determining their potential stochastic
characteristics. Then, the precise analyses of the behavior of these
models commonly needs the using of the invariant (probabilistic)
measures (IMs). One-dimensional nonlinear chaotic model is an
usually defined by the operator T : A → A, where A ⊆ R. If
chaotic map T (x) has a finite set of inverse branches T−1(x) =

{g1(x), . . . , g`(x)}, the determination of its IM is based on solving
the well-known Frobenius-Perron equation:

f (x) =
∑

y∈T−1(x)

f (y)
|T ′(y)|

. (18)

Here, f : R → R is unknown probability density function which
corresponds to appropriate IM, i.e. such that, for any Borel set
B ⊆ R, satisfies the following T-invariant condition:∫

B
f (x) dx =

∫
B

f ◦ T (x) dx. (19)

Since, as it is known, there no exists a general procedure
to solve Frobenius-Perron Eq. (18) here is proposed one of the
possible way of its solving, based on the HPM. For this purpose,
we construct the following homotopy equation:

(1 − p)
[
F(x; p) − f0(x)

]
+ p

F(x; p) −
∑

y∈T−1(x)

F(y; p)
|T ′(y)|

 = 0. (20)
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Here, p ∈ [0, 1] is embedding parameter and F(x, p) is solution
of the homotopy Eq. (20) expressed as the power series given by
Eq. (6). Thus, the solution of Frobenius-Perron Eq. (18) can be
obtain in the same way as in Eq. (7) , i.e. by substituting the power
series from Eq. (6) in Eq. (20). After some computations, the fol-
lowing equations get ones:

f1(x) =
∑

y∈T−1(x)

f0(y)
|T ′(y)|

− f0(x),

fk(x) =
∑

y∈T−1(x)

fk−1(y)
|T ′(y)|

, k ≥ 2.
(21)

Using Eqs. (21), functions { fk(x)} can be obtained recursively for
an arbitrary k = 1, 2, . . . The appropriate HPM-approximations of
the unknown function f (x) are

f̂k(x) :=
k∑

j=0

f j(x), k = 0, 1, 2, . . . (22)

and their convergence, under some sufficiently conditions, was
proven in Stojanović et al. (2018). In the following, some exam-
ples of application of the HPM in determining IMs will be de-
scribed.

Example 3 (Λ-map). On the closed unit interval [0, 1] consider
the so-called Lambda (Λ) map (Fig. 2, left panel):

Ta(x) =


x
a
, 0 ≤ x ≤ a,

1 − x
1 − a

, a < x ≤ 1,

where a ∈ (0, 1) is a predefined parameter. In this case, we have:

∣∣∣T ′a(x)
∣∣∣ =


1
a
, 0 ≤ x ≤ a,

1
1 − a

, a < x ≤ 1,

and T−1
a (x) = {ax, 1− (1−a)x} is the set of inverse branches. Thus,

the Frobenius-Perron equation is

f (x) = a f (ax) + (1 − a) f
(
1 − (1 − a)x

)
.

If we take, as an initial approximation f0(x) ≡ 1, then the first of
Eqs. (21) gives:

f1(x) = a f0 (ax) + (1 − a) f0
(
1 − (1 − a)x

)
− f0(x) ≡ 0.

After that, using the second of Eqs. (21), immediately follows
fk(x) ≡ 0, for any k ≥ 2. In that way, the initial approxima-
tion f0(x) ≡ 1 is exact solution of the Frobenius-Perron Eq. (18),
i.e. the invariant probability measure for this map is standard
Lebesgue measure.

Example 4 (Truncated Λ-map). Consider again the closed unit
interval [0, 1] and the fallowing map (Fig. 2, right panel):

Ta(x) =


x
a
, 0 ≤ x < a,

−x + a + 1, a ≤ x ≤ 1,

where, in the same way as in the previous case, a ∈ (0, 1) is a
predefined parameter. Here, we have:

∣∣∣T ′a(x)
∣∣∣ =


1
a
, 0 ≤ x < a,

1, a ≤ x ≤ 1,

and the set of inverse branches is T−1
a (x) = {g1(x), g2(x)}, where:

g1(x) = ax, 0 ≤ x ≤ 1,

g2(x) =

 0, 0 ≤ x < a,

−x + a + 1, a ≤ x ≤ 1,

According to this, here the Frobenius-Perron Eq. (18) takes the
following form:

f (x) =


a f (g1(x)), 0 ≤ x < a,

a f (g1(x)) + f (g2(x)), a ≤ x ≤ 1.
(23)

Now, if we take, as in previous example f0(x) ≡ 1 and apply
Eqs. (21), we obtain:

f1(x) =


a f0(g1(x)) − f0(x), 0 ≤ x < a,

a f0(g1(x)) + f0(g2(x)) − f0(x), a ≤ x ≤ 1,

=


a − 1, 0 ≤ x < a,

a, a ≤ x ≤ 1,

f2(x) =


a f1(g1(x)), 0 ≤ x < a,

a f1(g1(x)) + f1(g2(x)), a ≤ x ≤ 1,

=


a (a − 1), 0 ≤ x < a,

a2, a ≤ x ≤ 1,

f3(x) =


a f2(g1(x)), 0 ≤ x < a,

a f2(g1(x)) + f2(g2(x)), a ≤ x ≤ 1,

=


a2 (a − 1), 0 ≤ x < a,

a3, a ≤ x ≤ 1, etc.

In general, using the induction method, it can be easily proven that
equalities:

fk(x) =


ak−1 (a − 1), 0 ≤ x < a,

ak, a ≤ x ≤ 1,

hold for an arbitrary k ≥ 1. According to thus obtained series
{ fk(x)}, the solution of Frobenius-Perron equation in this case is
as following:
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Figure 2. Graphs of the Λ-map (panel left) and the truncated Λ-map (panel right).

f (x) :=
∞∑

k=0

fk(x) =


1 + (a − 1)

∞∑
k=1

ak−1, 0 ≤ x < a,

∞∑
k=0

ak, a ≤ x ≤ 1,

=


0, 0 ≤ x < a,

1
1 − a

, a ≤ x ≤ 1,
(24)

i.e. it is concentrated on the interval [a, 1]. It can be easily proved
that the last expression in Eq. (24) represents the invariant prob-
ability density of truncated Λ-map, i.e. the exact solution of the
Frobenius-Perron Eq. (23). Also, notice that, according to the well-
known facts about geometric series, the above HPM procedure
converges for arbitrary a ∈ (0, 1).

CONCLUSION

This paper describes the Homotopy perturbation method
(HPM) representing the powerful technique for solving of nonlin-
ear equations of various kinds. The HPM has been introduced in
approximate solving of the well-known implicit relation between
the electrostatic surface potential and terminal voltages in MOS-
FET transistor. As the second application of the HPM has been
chosen the determination of the invariant measures (IMs) of the
non-linear dynamical systems with chaotic behavior.

In the first case, the simple mathematical form and high de-
gree of accuracy of obtained HPM approximate analytical solution
lead to the improved surface potential based MOSFET model pre-
ferring for various circuit simulation programs. On the other hand,
due to the second application of HPM procedure is confirmed that
invariant measures of the chaotic mappings can be easily analyt-
ically determined. Two considered examples have been presented
to elucidate the efficiency and implementation of the HPM in solv-
ing of various kind of research problems.
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