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COMPARATIVE PERFORMANCE ANALYSIS OF SOME ACCEL-
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ABSTRACT

We analyze a performance profile of several accelerated and hybrid accelerated methods. All comparative methods
are at least linearly convergent and have satisfied numerical characteristics regarding tested metrics: number of
iterations, CPU time and number of function evaluations. Among the chosen set of methods we numerically show
which one is the most efficient and the most effective. Therewith, we derived a conclusion about what type of method
is more preferable to use considering analyzed metrics.
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ACCELERATED FACTOR IN ACCELERATED GRADI-
ENT MODELS

We are analyzing accelerated gradient descent iterations for
solving unconstrained optimization problems, mathematically de-
scribed as:

min f (x), x ∈ Rn (1)

where f : Rn → R is an objective function which we want
to minimize. For function f we assume that it is uniformly convex
and twice continuously differentiable function. Instead of usual it-
erative optimization schemes, expressed by:

xk+1 = xk + tkdk, (2)

we focus on accelerated gradient iterations given by the following
expression

xk+1 = xk − γ
−1
k tkdk. (3)

In (2) and (3) xk+1 stays for the next iterative function value,
xk is the current iterative function value, tk is the iterative step
size value and dk is the search direction vector. In (3) scalar γk

presents an iterative approximation parameter. Many authors con-
firmed, mostly numerically, that this parameter upgrades perfor-
mance profile of posed optimization method. Nevertheless, in Sta-
nimirović & Miladinović (2010) a class of methods containing
acceleration factor is denoted as the class of accelerated gradi-
ent methods. From the analysis presented in Petrović & Kontrec
(2017) we can conclude that one of the most efficient way for
calculating acceleration parameter is through the features of the
second order Taylor’s series taken on the objective accelerated it-
eration. Although there are some alternative modes for deriving
the acceleration parameter, we mention here several highly effi-
cient accelerated models with acceleration parameter obtained by
the Taylor’s development: Andrei (2006, 2008); Petrović & Stan-
imirović (2014); Petrović (2015); Stanimirović et al. (2015); Sta-
nimirović & Miladinović (2010). In this regard we display the ex-

pressions for acceleration parameters of some above mentioned
methods:
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2

t2
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2 .

Regarding the theory of unconstrained optimization meth-
ods, we have a unique opinion that there are two crucial elements
which defined a relevant iterative optimization scheme. The first
one is the vector direction, dk, which directs the minima search. It
is usually required to fulfil the descending condition:

gT
k dk < 0. (4)

The second, equally important, is the value of the iterative
step length, tk. This element is obtained trough the exact or in-
exact line search procedure. In practical purpose, the inexact al-
gorithms are certainly more preferable choice for obtaining the
optimal step size iterative value. With this regard, from all above
exposed, we can rightly conclude that besides these two listed el-
ements the value of acceleration parameter, γk, is also important
and crucial factor for one optimization method.

This paper is organized in the following way. In the second
section we give an overview of some important hybrid models and
hybridization process applied on accelerated gradient schemes. In
the main section 3, we display obtained numerical results of four
chosen models, conduct a comparative analysis and bring up a
conclusion.
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HYBRID MODELS

Some authors investigate a hybrid iterative systems for solv-
ing optimization problems. One of the first in this field was Picard.
In his work Picard (1890) presented the following set of two itera-
tions for solving optimization problems:{

u1 = u ∈ C,
uk+1 = Tuk, k ∈ N,

(5)

Later on, Mann exposed his set of expressions and called it
mean value methods in iterations{

v1 = v ∈ C,
vk+1 = (1 − αk)vk + αkTvk, k ∈ N.

(6)

Further on, Ishikawa presented a three-term model as next:
z1 = z ∈ C,
zk+1 = (1 − αk)zk + αkTyk,

yk = (1 − βk)zk + βkTzk, k ∈ N.
(7)

In the above displayed schemes vk, zk and yk present the se-
quences defined by related iterations, parameters {αk}, {βk} ∈ (0, 1)
and T : C → C is a mapping defined on nonempty convex subset
C of a normed space E.

In a recent research Khan (2013), introduced the following
set of relations

x1 = x ∈ R,
xk+1 = Tyk,

yk = (1 − αk)xk + αkT xk, k ∈ N.
(8)

In the same paper the author shows the advantages of posed
process and confirms that so defined model outperforms previous
three mentioned methods.

Taking good sides of the iteration set (8) the authors in Petro-
vić et al. (2017) applied accelerated gradient descent SM method,
presented in Stanimirović & Miladinović (2010), on this three-
term relation. As a result a hybrid accelerated scheme is devel-
oped. We call this iteration the HSM method and it is defined by
the expression:

xk+1 = xk − αtkγ−1
k gk, (9)

where parameter α ∈ (1, 2) and γk ≡ γHS M
k is iterative accelera-

tion parameter which is computed using the second order Taylor’s
series of the HSM iteration

γk+1 ≡ γ
HS M
k+1 = 2γk

γk
[
f (xk+1) − f (xk)

]
+ (αk + 1)tk‖gk‖

2

(αk + 1)2t2
k‖gk‖

2
. (10)

In Petrović et al. (2017) the authors proved that the HSM
method is at least linearly convergent on the set of uniformly con-
vex and strictly convex quadratic functions. Numerical tests con-
firm significant benefits when the HSM scheme is used instead of
its forerunner, the SM iteration. All these advantages indicate that

this new hybridization concept can be applied on some other ac-
celerated model and upgrade its features.

In Panić et al. (2018) some initial improvement is taken on
the HSM iteration and the modified version of the HSM scheme
is introduced. This model is denoted as the MHSM method. The
improvement regarding the HSM iteration consists in reducing the
initial step length value of the Backtracking line search algorithm.
Numerical experiments show some betterment compared to the
starting HSM method.

NUMERICAL COMPUTATIONS AND CONCLUSIONS
DRAWN

In this section we expose comparative analysis of perfor-
mance profile of four chosen methods. First comparative models is
the accelerated gradient SM method presented in Stanimirović &
Miladinović (2010). Second one is the hybrid accelerated method
HSM from Petrović et al. (2017) which presents a hybridization
of the SM method. Third model is the MHSM introduced in Panić
et al. (2018) and it presents modified version of the HSM, where an
initial improvement of starting value in Backtracking line search
procedure was taken. Final comparative method is the accelerated
gradient TADSS method which is revealed in Stanimirović et al.
(2015). We now display algorithms of all listed methods:

Algorithm 0.1 SM-method Stanimirović & Miladinović (2010)

Require: Objective function f (x) and chosen initial point x0 ∈

dom( f ).
1: Set k = 0 and compute f (x0), g0 = ∇ f (x0) and take γ0 = 1.
2: If test criteria are fulfilled then stop the iteration; otherwise,

go to the next step.
3: (Backtracking) Find the step size tk ∈ (0, 1] using Backtrack-

ing procedure with dk = −γ−1
k gk.

4: Compute xk+1 = xk − tkγ−1
k gk, f (xk+1) and gk+1 = ∇ f (xk+1).

5: Determine the scalar approximation γk+1 of the Hessian of f
at the point xk+1 using γS M

k+1 representation.
6: If γk+1 < 0, then take γk+1 = 1.
7: Set k := k + 1, go to the step 2.
8: Return xk+1 and f (xk+1).

Algorithm 0.2 HSM-method Petrović et al. (2017)

Require: Function f (x), α ∈ (1, 2), initial point x0 ∈ dom( f ).
1: Set k = 0 and calculate f (x0), g0 = ∇ f (x0), set γ0 = 1.
2: Check the test criteria; if stopping criteria are fulfilled then

stop the algorithm; otherwise, go to the next step.
3: Applying Backtracking Algorithm: Compute the value of step

size tk ∈ (0, 1] taking dk = −γ−1
k gk.

4: Determine xk+1 = xk − αtkγ−1
k gk, f (xk+1) and gk+1 = ∇ f (xk+1).

5: Compute γk+1, approximation of the Hessian of function f at
the point xk+1 using γHS M

k+1 representation.
6: If γk+1 < 0 take γk+1 = 1.
7: k := k + 1, go to the step 2.
8: Return xk+1 and f (xk+1).
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Algorithm 0.3 MHSM-method Panić et al. (2018)

Require: Function f (x), α ∈ (1, 2), initial point x0 ∈ dom( f ).
1: Set k = 0 and calculate f (x0), g0 = ∇ f (x0), set γ0 = 1.
2: Check the test criteria; if stopping criteria are fulfilled then

stop the algorithm; otherwise, go to the next step.
3: Applying Backtracking Algorithm: Compute the value of step

size tk ∈ (0, 1
α

] taking dk = −γ−1
k gk.

4: Determine xk+1 = xk − αtkγ−1
k gk, f (xk+1) and gk+1 = ∇ f (xk+1).

5: Compute γk+1, approximation of the Hessian of function f at
the point xk+1 using γHS M

k+1 representation.
6: If γk+1 < 0 take γk+1 = 1.
7: k := k + 1, go to the step 2.
8: Return xk+1 and f (xk+1).

Algorithm 0.4 TADSS-method Stanimirović et al. (2015)

Require: 0 < ρ < 1, 0 < τ < 1, x0, γ0 = 1.
1: Set k = 0, compute f (x0), g0 and take γ0 = 1.
2: If ‖gk‖ < ε, then go to Step 9, else continue by the next step.
3: Find the step size αk applying Backtracking Algorithm.
4: Compute xk+1 using xk+1 = xk − [αk(γ−1

k − 1) + 1]gk.

5: Determine the scalar γk+1 using γT ADS S
k+1 representation.

6: If γk+1 < 0 than take γk+1 = 1.
7: Set k := k + 1, go to the step 2.
8: Return xk+1 and f (xk+1).

We conducted numerical tests, for each comparative model,
on 12 functions from Andrei (2008) for ten different number of
variables: 100, 500, 1000, 1500, 2000, 3000, 5000, 7000, 8000,
10000. In the next six tables we reveal achieved results of all tested
models. In order to simplify the table representations we paired
the results of the SM and the MHSM algorithms and there with
the results of the HSM and the TADSS. In the first three tables i.e.
Tables (1) (2) and (3) we illustrate the results of obtained number
of iterations, CPU time and the number of function evaluations,
respectively, for the first pair of methods (SM and MHSM).

Table 1. Numerical results of SM and MHSM methods tested on
12 large scale test functions regarding number of iterations metric.

No. of iterationsTest function
SM MHSM

Extended Penalty 536 449
Perturbed quadratic 41689 9228
Raydan-1 14149 7374
Extended Three Expon... 141 320
Quadratic QF1 45245 6530
Extended Quad. Penalty QP1 225 289
Extended Quad. Penalty QP2 1582 5247
Quadratic QF2 46662 11281
Extended EP1 63 217
Arwhead 228 1312
Almost Perturbed Quadratic 45098 9344
QUARTC Function 10 10

Table 2. Numerical results of SM and MHSM methods tested on
12 large scale test functions regarding CPU time metric.

No. of iterations
Test function SM MHSM
Extended Penalty 536 449
Perturbed quadratic 3 5
Raydan-1 60 80
Extended Three Expon... 0 2
Quadratic QF1 365 66
Extended Quad. Penalty QP1 0 3
Extended Quad. Penalty QP2 5 52
Quadratic QF2 504 186
Extended EP1 0 0
Arwhead 6 39
Almost Perturbed Quadratic 501 116
QUARTC Function 0 0

Table 3. Numerical results of SM and MHSM methods tested on
12 large scale test functions regarding number of function evalua-
tions metric.

No. of func.evaluations
Test function SM MHSM
Extended Penalty 2851 5487
Perturbed quadratic 233149 74903
Raydan-1 76418 43588
Extended Three Expon... 723 1525
Quadratic QF1 253994 48796
Extended Quad. Penalty QP1 2305 2332
Extended Quad. Penalty QP2 11307 37303
Quadratic QF2 258694 100259
Extended EP1 628 1947
Arwhead 4142 13105
Almost Perturbed Quadratic 250191 76563
QUARTC Function 30 30

Table 4. Numerical results of TADSS and HSM methods tested on
12 large scale test functions regarding number of iterations metric.

No. of iterationsTest function
TADSS HSM

Extended Penalty 40 400
Perturbed quadratic 11618 17086
Raydan-1 823 8377
Extended Three Expon... 40 413
Quadratic QF1 6191 15826
Extended Quad. Penalty QP1 50 338
Extended Quad. Penalty QP2 86 2704
Quadratic QF2 50 19816
Extended EP1 249 186
Arwhead 50 1023
Almost Perturbed Quadratic 11344 16980
QUARTC Function 10 10
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Table 5. Numerical results of TADSS and HSM methods tested on
12 large scale test functions regarding CPU time metric.

CPUTest function
TADSS HSM

Extended Penalty 0 0
Perturbed quadratic 0 58
Raydan-1 3 32
Extended Three Expon... 0 0
Quadratic QF1 1 78
Extended Quad. Penalty QP1 0 0
Extended Quad. Penalty QP2 0 10
Quadratic QF2 0 198
Extended EP1 0 0
Arwhead 0 7
Almost Perturbed Quadratic 0 146
QUARTC Function 0 0

Table 6. Numerical results of TADSS and HSM methods tested on
12 large scale test functions regarding number of function evalua-
tions metric.

No. of func.evaluationsTest function
TADSS HSM

Extended Penalty 1123 4823
Perturbed quadratic 31349 137297
Raydan-1 10369 48952
Extended Three Expon... 400 1835
Quadratic QF1 16976 121539
Extended Quad. Penalty QP1 517 2224
Extended Quad. Penalty QP2 638 21102
Quadratic QF2 532 170950
Extended EP1 767 1514
Arwhead 549 12076
Almost Perturbed Quadratic 30838 139053
QUARTC Function 30 30

In the Tables (4), (5) and (6) we display the numerical out-
comes for the second pair of methods (TADSS and HSM). Table
(4) contains the number of iterations data, Table (5) contains CPU
time data and Table (6) contains the number of function evalua-
tions data, respectively, for both models.

For all tests the usual exit condition was taken:

‖gk‖ ≤ 10−6 and
| f (xk+1) − f (xk)|

1 + | f (xk)|
≤ 10−16.

From last six tables we can count that the TADSS method
outperform all others regarding all three analyzed metrics. Con-
sidering number of iterations in case of 8 test function TADSS is
gives the best results, follows the MHSM with 2 test functions and
the SM with 1 test functions. For 1 test function all methods show
the same number of iterations, the same number of function evalu-
ations and the same CPU time. Regarding the number of function
evaluations, the TADSS upgrades the rest of comparative math-
ods in 10 test functions, while the SM gives the best results for 1
test function. Considering the CPU time metric, the TADSS shows
convincingly best outcomes.

More clearer comparative view can be seen from the next
Table (7) where the average values with respect to all three mea-
sured characteristics, regarding all four comparative methods, are
included.

Table 7. Average numerical outcomes for 12 test functions tried
out on 10 numerical experiments in each iteration.

Aver. perf. HSM MHSM SM TADSS
Num. of iter. 6929.92 4300.08 16302.33 2545.92
CPU time 44.08 52.42 148.5 0.33
(sec)
Num. of fun. 55116.75 33819.83 91202.67 7840.67
eval.

From the previous Table (7) we can see that the TADSS in
a large degree outperforms the other three schemes regarding all
three measured metrics. More precise, considering the number of
iterations the TADSS shows almost three times better results than
the HSM, approximately 1.7 times better than the MHSM and even
6.5 times better results than the SM method. Regrading the num-
ber of function evaluations the TADSS obtains about 7 times lower
outcomes compered to the HSM method, more then 4 times lower
values compared to the MHSM and about 11.5 times lower num-
ber compared to the SM method. When the CPU time is is con-
sidered, the TADSS shows nearly 133.5, 159, 0.33 and 450 times
faster execution time when compared to the HSM, the MHSM and
the SM respectively. This fabulous numerical outcomes in favor
to the TADSS scheme are not so surprising since in Stanimirović
et al. (2015) the advantage of this method in comparatione to
the SM scheme is numerically confirmed. Since in Petrović et al.
(2017); Panić et al. (2018) betterment of the hybrid and modified
hybrid version of the SM method in comparatione to the SM iter-
ation is detected, it is not surprising that the HSM and MHSM in
Table (7) give better outcomes than the SM model.

The previous analysis lead us to an interesting question: if
we make a hybrid model of the TADSS method would it be more
efficient than the very TADSS iteration? The answer on this ques-
tion will be revealed trough some further investigations.

From presented facts we can conclude that the hybridization
process presented in Khan (2013) is a good way for improving a
performance profile of the certain optimization method.
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Ilić, D. 2017, Hybridization of accelearted gradient de-
scent method. Numerical Algorithms, 79(3), pp 769–786,
doi:10.1007/s11075-017-0460-4
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