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1Department of Mathematics, Faculty of Sciences and Mathematics, University of Priština, Kosovska Mitrovica, Serbia
2Department of Mathematics and Statistics, Faculty of Economics, University of Belgrade, Belgrade, Serbia

ABSTRACT

Concept of causality is very popular and applicable nowadays, especially when we consider the cases "what would
happen if" and "what would have happened if". Here we consider the concept of causality based on the Granger’s
definition of causality, introduced in Mykland (1986). Many of the systems to which it is natural to apply tests of
causality take place in continuous time, so we will consider the continuous time processes. Here we consider the
connection between the concept of causality and the property of being a quasimartingale. Quasimartingales were
investigated by Fisk (1965), Orey and specially Rao (1969). Namely, in this paper we prove an equivalence between
the given concept of causality and preservation of quasimartingale property if the filtration is getting larger. We prove
the same equivalence for the stopped quasimartingale with respect to the truncated filtrations.
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INTRODUCTION

In this paper we consider a stochastic process Xt which have
a decomposition into the sum of a martingale process and a process
having almost every sample function of bounded variation on the
interval I(I ⊆ R). Such a process is called a quasimartingale.

After Introduction, in Section 2 we give definition of the
causality concept, based on the Granger’s definition of causality
and some basic properties of that concept which will be used later.

One of the goals of science is to find causal relations. This
cannot always be done by experiments and researchers are re-
stricted to observe the system they want to describe. This is the
case in, e.g., economics, demography, etc. In the papers of Flo-
rens & Mouchart (1982), Gill & Petrovic (1987), Mykland (1986),
Petrović (1996) it is shown how the conditional independence can
serve as a basis for a general probabilistic theory of causality for
both processes and single events.

The paper introduces a statistical concept of causality which
unifies the nonlinear Granger–causality with some related con-
cepts.

The linear Granger–causality was introduced by Granger,
1969. We shall study a nonlinear version of the concept. Like the
linear one, it defines that the process Y = {Yt, t ∈ I}, (I ⊆ R) does
not cause the process X = {Xt, t ∈ I} if, for all t, the orthogonal
projection of the L2-space representing Xs, s > t, on the space rep-
resenting Xs and Ys, s ≤ t is contained in the space representing
Xs, s ≤ t. However, the spaces representing stochastic variables
are those over the σ-field generated by these variables, while in
the linear case they are the smallest closed linear spaces contain-
ing the variables.

We give a generalization of a causality relationship "G en-
tirely causes H within F" which (in terms ofσ-algebras) was intro-
duced by Mykland (1986) and which is based on Granger’s defini-

tion of causality (see Granger (1969)) and discuss the relationship
to nonlinear Granger–causality.

In Section 3, we consider relations between the given causa-
lity concept and the quasimartingale properties. More precisely,
we analyze connection between causality and the preservation of
the quasimartingale property with respect to the enlarged filtration
F (F is enlarged filtration of the natural filtration of quasimartin-
gale FX).

The given concept of causality can be connected to the or-
thogonality of martingales (see Valjarević & Petrović (2012)) and
the stable subspaces of Hp which contains the right continuous
modifications of martingales (see Petrović & Valjarević (2013)).
The preservation of the predictable representation property, in
the case when the information σ-algebra increases, is strongly
connected to the concept of causality (see Petrović & Valjarević
(2014)). Also, the concept of statistical causality can be connected
to the local weak solutions of stochastic differential equations
driven with semimartingales (see Petrović & Valjarević (2015)).

NOTATIONS AND DEFINITIONS

Concept of causality

Following Granger’s and Sims’s pioneering papers (see
Sims (1972)), the notion of causality in econometric is generally
defined within framework of prediction theory. This notion refers
to situations in which it is possible to reduce the size of the infor-
mation set that is taken into account for predicting a given variable
X1 without affecting the precision level of the prediction.

More precisely, a set of economic variables, denoted by X2,
does not cause a set of variables X1, if the information available
about X2 may be forgotten without any consequence regarding the
prediction of future X′1s. Since the content of the "available in-
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formation" set is not precisely described, the definition remains
ambiguous.

Modern financial econometrics is mainly devoted to the
study of rapidly evolving stochastic processes. The recent devel-
opment of continuous time modelling in finance is an important
motivation for considering the concept of causality in continuous
time.

In this part of the paper we give the definition of the concept
of causality relationship (in continuous time) between the flow of
information (represented by filtrations) and between the stochastic
processes.

Let (Ω,F , P) be an arbitrary probability space and let F =

{Ft, t ∈ I(⊆ R)}, be a family of sub-σ-algebras of F . Ft can be
interpreted as the set of events observed up to time t. Whether or
not sup I = +∞ or inf I = −∞ we define F∞ as the smallest σ-
algebra containing all the Ft (even if sup I < +∞). So, we have
F∞ =

∨
t∈I
Ft and F−∞ =

⋂
t∈I
Ft.

A filtration F = {Ft, t ∈ I} is a nondecreasing family of
sub-σ-algebras of F , i.e. that is

Fs ⊆ Ft, s ≤ t.

A probabilistic model for a time-dependent system is de-
scribed by (Ω,F ,Ft, P), where (Ω,F , P) is a probability space and
{Ft, t ∈ I} is a "framework" filtration, i.e. (Ft) are all events in the
model up to and including time t and (Ft) is a sub-σ-algebra of
(F ). We suppose that the filtration (Ft) satisfy the “usual condi-
tions”, which means that (Ft) is right continuous and each (Ft) is
complete.

Analogous notation will be used for filtrations H = {Ht} and
G = {Gt}, t ∈ I.

It will be said that the filtrations G and F are equivalent (and
written as G = F) if G ⊆ F and F ⊆ G, or equivalently, if Gt = Ft

for each t.
A family of σ-algebras induced by a stochastic process X =

{Xt, t ∈ I} is given by FX = {F X
t , t ∈ I}, where

F X
t = σ{Xu, u ∈ I, u ≤ t},

being the smallest σ-algebra with respect to which the ran-
dom variables Xu, u ≤ t are measurable. The process Xt is (Ft)-
adapted (or adapted to the filtration F = {Ft}) if all Xu, u ≤ t are
F-measurable, i.e. if

F X
t ⊆ Ft for each t.

The notation (Xt,Ft) means that Xt is (Ft)-adapted.
A family ofσ-algebras may be induced by several processes,

e.g. FX,Y = {F
X,Y

t , t ∈ I}, where

F
X,Y

t = F X
t

∨
F Y

t , t ∈ I.

On the probability space (Ω,F , P) the process Z = {Zt, t ∈ I}
is a (Ft, P)-martingale if Zt is (Ft)-adapted and E(Zt |Fs) = Zs for
all t ≥ s.

The intuitively plausible notion of causality formulated in
terms of Hilbert spaces, is given in Petrović (1996). We shall use
analogue notion of causality in terms of filtrations. Let F, G and
H be arbitrary filtrations. We can say that " G entirely causes H
within F " if

H∞ ⊥ Ft |Gt (1)

because the essence of (1) is that (Gt) contains all information
from the (Ft) needed for predicting H∞. Let us mention that the
condition G ⊆ F does not represent essential restriction. Thus, it is
natural to introduce the following definition of causality between
filtrations.

Definition 1. (see Petrović (1996)) It is said that G entirely causes
(or just causes) H within F relative to P (and written as H |<
G; F; P) ifH∞ ⊆ F∞, G ⊆ F and ifH∞ is conditionally indepen-
dent of (Ft) given (Gt) for each t, i.e.

H∞ ⊥ Ft |Gt for each t, (2)

(i.e.Hu ⊥ Ft |Gt holds for each t and each u), or

(∀A ∈ H∞) P(A|Ft) = P(A|Gt).

If there is no doubt about P, we omit "relative to P".
The continuous time framework is fruitful, not only for the

internal consistency of economic theories but also for the statisti-
cal approach to causality analysis between stochastic processes.

Intuitively, H |< G; F means that, for arbitrary t, information
about H∞ provided by (Ft) is not "bigger" than that provided by
(Gt) or that it is possible to reduce available information from (Ft)
to (Gt) in order to predictH∞ .

If G and F are such that G |< G; F, we shall say that G is
its own cause within F (compare with Mykland (1986)). It should
be mentioned that the notion of subordination (as introduced in
Rozanov (1974)) is equivalent to the notion of being one’s own
cause, as defined here. It should be noted that "G is its own cause"
sometimes occurs as a useful assumption in the theory of mar-
tingales and stochastic integration (see Bremaud & Yor (1978),
Revuz & Yor (2005)).

These definitions can be applied to stochastic processes if
we are talking about the corresponding induced filtrations. For ex-
ample, (Ft)-adapted stochastic process Xt is its own cause if (F X

t )
is its own cause within (Ft), i.e. if

FX |< FX; F; P, holds.

Extensions of the definitions to vector processes are usually
straightforward.

The process X which is its own cause is completely de-
scribed by its behavior relative to its natural filtration FX . For
example, process X = {Xt, t ∈ I} is a Markov process relative
to the filtration F = {Ft, t ∈ I} on a filtered probability space
(Ω,F ,Ft, P) if and only if X is a Markov process relative to FX

and it is its own cause within F relative to P.
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The concepts of causality in continuous time are truly rele-
vant for economic reasons (see Comte & Renault (1996)).

In many situations we observe some system up to some ran-
dom time, for example till the time when something happens for
the first time. Definition 1 is extended from fixed times to stopping
times in Petrović & Valjarević (2016).

The σ-field (FT ) = {A ∈ F : A ∩ {T ≤ t} ∈ Ft} is usually
interpreted as the set of events that occurs before or at time T (see
Elliot (1982)). For a process X, we set XT (ω) = XT (ω)(ω), when-
ever T (ω) < +∞. We define the stopped process XT = {Xt∧T , t ∈ I}
with

XT
t (ω) = Xt∧T (ω)(ω) = Xtχ{t<T } + XTχ{t≥T }.

Note that if X is adapted and cadlag and if T is a stopping time,
then the stopped process XT is also adapted.

Let us mention that the truncated filtration (Ft∧T ) is defined
as

Ft∧T = Ft ∩ FT =

{
Ft, t < T,
FT , t ≥ T.

A martingale stopped at a stopping time is still a martingale. The
natural filtration for the stopped martingale Xt∧T is FXT

= (F X
t∧T ),

with respect to which the process Xt∧T is completely described.
So, we have the definition of causality which involves the stopping
times.

Definition 2. (Petrović & Valjarević (2016)) Let H = {Ht},
G = {Gt} and E = {Et}, t ∈ I, be given filtrations on the proba-
bility space (Ω,F , P) and let T be a stopping time with respect to
filtration E. The filtration GT entirely causes ET within HT rela-
tive to P (and written as ET |< GT ; HT ; P) if ET ⊆ HT , GT ⊆ HT

and if ET is conditionally independent ofHt∧T givenGt∧T for each
t, i.e. (∀t) ET ⊥ Ft∧τ | Gt∧τ, or

(∀t ∈ I)(∀A ∈ ET ) P(A | Ht∧T ) = P(A | Gt∧T ). (3)

The concept of causality given in Definition 2 includes the
stopped filtrations. Namely, the causality relationship is defined up
to a specified stopping time T .

Quasimartingales

The term quasimartingale is for the first time used by Fisk
(1965). It is obvious that the sum and difference of two quasi-
martingales are again quasimartingales. The difference of two pos-
itive local martingales is necessarily a quasimartingale. Let us
mention that there are some similarities between quasimartingales
and supermartingales. Note that every finite set of random vari-
ables with expectations is trivially a quasimartingale. A mean right
continuous quasimartingale always has a cadlag (right continuous
with left limits) modification. Henceforth we will assume, unless
otherwise stated, that all processes considered are cadlag at every
time point.

Definition 3. (Protter, 2004) A finite tuple of points τ =

(t0, t1, . . . , tn+1) such that 0 = t0 < t1 < · · · < tn+1 = ∞ is a
partition of [0,∞].

Definition 4. (Protter, 2004) Suppose that τ is a partition of [0,∞]
and that Xti ∈ L1, each ti ∈ τ. Define

C(X, τ) =

n∑
i=0

|E(Xti − Xti+1 | Fti )|.

The variation of X along τ is defined to be

Varτ(X) = E(C(X, τ)).

The variation of X is defined to be

Var(X) = supτVarτ(X),

where supremum is taken over all such partitions.

Definition 5. (Protter, 2004) An adapted, cadlag process X is a
quasimartingale on [0,∞] if E(|Xt |) < ∞, for each t, and if
Var(X) < ∞.

Next Theorem defines a Doob decomposition of quasi-
martingale.

Theorem 6. (Rao, 1969) A right continuous process Xt is a quasi-
martigale if and only if it has a generalised Doob decomposition

Xt = Yt + Mt − Bt,

where Yt is a martingale, Mt is the difference of two non-negative
local martingales, and Bt is the difference of two natural inte-
grable increasing processes. This decomposition is unique.

The definition of natural integrable increasing process is
given in Rao (1969).

CAUSALITY AND QUASIMARTINGALES

The certain results, not obvious from the definition of a
quasimartingale or the fact that it is the difference of two super-
martingales, follow from the decomposition from Theorem 6. The
starting point in this section is the decomposition

Xt = Mt − Bt (4)

of a quasimartingale Xt into a local martingale Mt and a natural
process with finite expected total variation Bt. This decomposition
is unique.

Let (Gt) be a subfiltration of the filtration (Ft), i.e. (Gt) ⊆
(Ft). The next theorem holds.

Theorem 7. Every quasimartingale Xt with respect to (Gt) is a
quasimartingale with respect to (Ft) if and only if G is its own
cause within F, or equivalently if

G |< G; F; P holds.

Proof. Let the process Xt be a (Gt) and (Ft) quasimartingale. From
its unique decomposition (4) it follows that process Mt is a (Gt)
and (Ft)-local martingale. According to Theorem 3.3 in Valjarević
(2012), the causality G |< G; F; P holds.

MATHEMATICS, COMPUTER SCIENCE AND MECHANICS
51



Conversely, let G |< G; F; P holds and let the process Xt be
a (Gt)-quasimartingale. Then, the process Xt has a unique decom-
position Xt = Mt − Bt, where Mt is a (Gt)-local martingale. From
G |< G; F; P and Theorem 3.3 in Valjarević (2012) it follows that
the process Mt is (Ft)-local martingale, too. Also, the process Bt is
a natural process with finite expected total variation with respect
to filtration (Ft), because (Gt) ⊂ (Ft). Hence, the process Xt has a
unique decomposition Xt = Mt − Bt with respect to filtration (Ft),
so it is a (Ft)-quasimartingale.

Let FX be a natural filtration of the quasimartingale Xt. Then
the following theorem holds.

Theorem 8. Process Xt is a (Ft)-quasimartingale if and only if it
is its own cause within (Ft), or equivalently if holds

FX |< FX; F; P.

Proof. Follows directly by Theorem 7 (we set G = FX).

Theorem 9. Let the process X be uniformly integrable quasi-
martingale with respect to G, let T be a (Gt)-stopping time and
G ⊂ F. Then the stopped process XT = Xt∧T is quasimartingale
with respect to FT = {Ft∧T } if and only if GT is its own cause
within FT , i.e. if

GT |< GT ; FT ; P holds.

Proof. Let the process X be uniformly integrable quasimartingale
with respect to G, T be a (Gt)-stopping time and

GT |< GT ; FT ; P. (5)

Due to Lemma I.1.8.12 in Skorohod & Gikhman (2005) we have
that XT is quasimartingale with respect to GT . According to the
relation (5), from assumption of the theorem it follows that XT

is quasimartingale with respect to GT = {Gt∧T }. By Definition 5,
Theorem 6 and assumption on the beginning of the Section it fol-
lows that the process XT can be represented as

XT = MT − BT .

This decomposition is unique. Process MT is martingale with re-
spect to GT . According to Theorem 6 in Petrović & Valjarević
(2016), from (5) it follows that the process MT is martingale with
respect to FT , too. Using the same technique as in the previous
proof, we get that BT is a process of bounded variation with re-
spect to GT and FT , too (GT ⊂ FT ). So, process XT can be pre-
sented as XT = MT − BT with respect to FT , where MT is a local
martingale and BT is a process of bounded variation.

Conversely, suppose that XT is quasimartingale with respect
to GT and FT , where T is a (Gt)-stopping time. Due to decom-
position of the quasimartingale and its uniqueness, follows that
XT = MT − BT is unique decomposition with respect to GT and
FT . So, MT is martingale with respect to filtrations GT and FT .
Due to Theorem 6 in Petrović & Valjarević (2016), it follows that
GT |< GT ; FT ; P holds.
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