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ABSTRACT

In this paper, the analysis of Shannon capacity for selection combining (SC) and maximal ratio combining (MRC)
diversity systems in the generalized α − κ − µ fading channel is presented. Closed-form expressions for probability
density function (PDF) at the output of SC and MRC diversity systems are given. Also, closed-form expressions for
Shannon capacity for cases of SC diversity with independent and identically distributed branches, MRC diversity
with independent and identically distributed branches and for case of no diversity are derived. The obtained results
are numerically calculated and graphically presented for different combinations of fading parameters α, κ and µ.

Keywords: α − κ − µ distribution, Selection Combiner (SC), Maximal Ratio Combiner (MRC), Shannon capacity,
Diversity system.

INTRODUCTION

During transmission, the signal transmitted between the
transmitter and the receiver is exposed to various effects. These
effects such as shadowing and multipath, adversely affect the sig-
nal being transmitted and diminish the performance of the sys-
tem (Simon & Alouini, 2005a). There are several ways to reduce
the impact of the presented effects on system performance. One
of the most commonly used ways to reduce the impact of mul-
tipath fading is to use the diversity concept such as space diver-
sity (Freeman, 2005). This diversity concept effectively reduce the
impact of multipath fading and increase the performance of the
system by using multiple transmit or receiver antennas (Stüber,
2002). These antennas are spaced sufficiently far apart so as to
obtain signals that fade independently (Ibnkahla, 2005). Diversity
combining techniques that are often used are selection combining
technique (SC), equal gain combining technique (EGC), maximal
ratio combining technique (MRC).

Performance analysis over different channel fading model
are considered in many paper. Probability density function (PDF)
and cumulative distribution function (CDF) over Rayleigh fading
channel for EGC diversity system are given in (Talha et al., 2010).
Bit error rate under α − µ, κ − µ and η − µ fading channel for
SC diversity system is presented in (Mitrović et al., 2009; Sub-
adar et al., 2010). Also, bit error rate under κ − µ and η − µ fading
channel for MRC diversity system is presented in (Dixit & Sahu,
2012). System performances such as probability output (Pout) and
symbol error rate (SER) over Weibull and α − µ fading channel
for SC diversity are shown in (Katiyar, 2015; Sagias et al., 2003).
Same system performances in α − µ, κ − µ and η − µ fading chan-
nel for MRC diversity are given in (Aldalgamouni et al., 2013;
Subadar et al., 2012; Milišić et al., 2009). Shannon capacity over

κ and Gamma fading channel for MRC and SC diversity systems
is analyzed in (Yilmaz, 2012; Subadar & Das, 2017). Diversity
techniques are not the only method to reduce the impact of fad-
ing and improve the characteristics of the system. A widely used
technique is the technique of adaptive transmission. By combining
adaptive transmission techniques and diversity techniques, better
performance of the system is achieved. Analysis of the capaci-
ties of such systems by using adaptive transmission algorithms
and diversity techniques over α − µ, κ − µ, Nakagami-m, Weibull
and Rayleigh fading channels are investigated in (Mohamed et al.,
2013; Subadar & Sahu, 2010; Panić et al., 2013; Subadar et al.,
2010; Bessate & El, 2017; Simon & Alouini, 2005b).

In this paper, we investigate Shannon capacity over general-
ized α − κ − µ fading channel. We consider cases for the proposed
fading model when the system does not have a diversity, but also
when the system has SC diversity and MRC diversity. Closed-form
expressions of PDF and Shannon capacity for these systems will
be presented.

SYSTEM AND CHANNEL MODEL

No diversity

In this case, the system we are discussing consists of a trans-
mitter and receiver without a diversity combiner. Also, transmis-
sion through the slowly changing α − κ − µ fading channel is con-
sidered. For this system, probability density function for received
signal-to-noise ratio is given in (Huang & Yuan, 2018) as:

? Corresponding author: milan.savic1@pr.ac.rs

MATHEMATICS, COMPUTER SCIENCE AND MECHANICS
61



fg(g) =
αµ (1 + κ)

1+µ
2 g

α(µ+1)
4 −1

2κ
µ−1

2 eκµg̃
α(µ+1)

4

× e
−µ(1+κ) g

α
2

g̃
α
2 Iµ−1

2µ
√
κ (1 + κ)

g
α
2

g̃
α
2

 (1)

where parameter α represents nonlinearity of propagation environ-
ment, parameter κ is Rice factor, parameter µ represents number
of clusters in propagation environment, g̃ represents average SNR
and Iv (·) denotes modified Bessel function (Huang & Yuan, 2018).

By transforming Bessel function using equation (8.445)
from (Gradshteyn & Ryzhik, 2000) and replacing in equation (1)
we obtain:
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SC diversity with L branches

In this case, we consider a SC diversity receiver with L
branches, operating over α − κ − µ fading channel. All branches
are identically and independently distributed. Selective combining
(SC) is combining technique where the strongest signal is chosen
among L branches of diversity system. PDF of the SNR at the out-
put of the SC receiver with L branches can be calculated by using
expression (4) from (Mitrović et al., 2009):

f S C
g (g) = L fg (g)

(
Fg (g)

)L−1
(3)

where Fg (g) represents a cumulative distribution function and
fg (g) represent a probability density function for α − κ − µ fad-
ing given in equation (2). Cumulative distribution function can be
calculated as:

Fg (g) =

g∫
0

fg (g) dg (4)

Substituting equation (2) in equation (4) and applying equa-
tion (3.381/1) from (Gradshteyn & Ryzhik, 2000), cumulative dis-
tribution function becomes:
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where γ (n, x) represents lower incomplete Gamma function de-
fined as (8.350/1) from (Gradshteyn & Ryzhik, 2000). Transform-
ing lower incomplete Gamma function from equation (5) by using
relation γ (n, x) =

∑∞
p=0

xn+pΓ(n)e−x

Γ(n+p+1) and replacing in equation (5),

after some mathematical manipulation, we obtain cumulative dis-
tribution function for α − κ − µ fading model:
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Substituting equations (2) and (6) in equation (3) we obtain ex-
pression for probability density function of the SNR at the output
of the SC receiver with L branches:
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MRC diversity with L branches

In this case, we consider a MRC diversity receiver with L
branches, operating over α−κ−µ fading channel. All branches are
identically and independently distributed. Maximal Ratio Combin-
ing (MRC) is combining technique where received signals from
all diversity branches are co-phased, proportionally weighted, and
combined to maximize the output SNR (Subadar et al., 2010). PDF
of the SNR at the output of the MRC receiver with L branches
can be calculated by using relation (12) from (Milišić et al., 2009)
where is αMRC = α; κMRC = κ; µMRC = Lµ; g̃MRC = Lg̃. Applying
this relation in equation (2), PDF of the SNR at the output of the
MRC receiver with L branches becomes:

f MRC
g (g) =

αLµ (1 + κ)
1+Lµ

2

2κ
Lµ−1

2 eLκµ
e
−Lµ(1+κ) g

α
2

(Lg̃)
α
2

×

∞∑
j=0

(
Lµ
√
κ (1 + κ)

)Lµ+2 j−1
g

α(Lµ+ j)
2 −1

j!Γ (Lµ + j) (Lg̃)
α(Lµ+ j)

2

(10)

SHANNON CAPACITY ANALYSIS

Channel capacity is one of the most important performance
measures of the system. The Shannon capacity of a channel defines
its theoretical upper bound for the maximum rate of data transmis-
sion at an arbitrarily small bit error probability, without any delay
or complexity constraints (Ibnkahla, 2005). It can be expressed as:

C = B

∞∫
0

log2 (1 + g) fg (g) dg (11)
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where C represents Shannon capacity given in bits/s, B denotes
denotes transmission bandwidth given in Hz and fg (g) repre-
sent probability density function. Using relation log2 (1 + g) =

ln (1 + g) / ln (2), expression (11) can be rewritten as:

C
B

=
1
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ln (1 + g) fg (g) dg (12)

Shannon capacity - no diversity

Shannon capacity for system without diversity over α−κ−µ fading
channel can be calculated by replacing equation (2) in equation
(12). After replacing equation (2) in equation (12) and after some
mathematical manipulation, we obtain:
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By using equations (8.4.6/5) where is ln (1 + x) =
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represents MeijerG function. In-

tegral from equation (15) can be solved by using equation
(2.24.1/1) from (Prudnikov & Brychkov, 2003). Applying this
equation, Shannon capacity for system without diversity is:
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Equation (16) represent closed-form expression of Shannon
capacity for system without diversity over α−κ−µ fading channel.
This expression is valid only for integer values of fading param-
eter α. Also, this expression is general, and Shannon capacity for
system without diversity over other fading models such as α − µ,
κ−µ, Nakagami - m and Rayleigh models can be obatined from it.

Shannon capacity - SC diversity with L branches

Shannon capacity at the output of SC diversity receiver with
L branches can be calculated by replacing equation (7) in equa-
tion (12). Substituting equation (7) in equation (12), applying re-
lation for transforming logarithm and exponential functions over
MeijerG function what is explained in previous section and using
equation (2.24.1/1) from (Prudnikov & Brychkov, 2003) we obtain
Shannon capacity:
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Shannon capacity - MRC diversity with L branches

Shannon capacity at the output of SC diversity receiver with
L branches can be calculated by replacing equation (10) in equa-
tion (12). Substituting equation (10) in equation (12), applying re-
lation for transforming logarithm and exponential functions over
MeijerG function what is explained in previous section and using
equation (2.24.1/1) from (Prudnikov & Brychkov, 2003) we obtain
Shannon capacity:
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NUMERICAL RESULTS

In this section, the analytically obtained results will be nu-
merically calculated and graphically presented.

Figure 1 depicts Shannon capacity over α − κ − µ fading
channel for system without diversity. The results are shown for
different combinations of parameters κ and µ while the value of
the fading parameter α is fixed. From Figure 1 it can be seen that
increasing the value of these parameters increases the capacity of
the channel. Also, from the Figure 1 it can be seen that parameter
µ more influence on the channel capacity than parameter κ.

Figure 1. Influence of fading parameters κ and µ on channel ca-
pacity.

Figure 2 depicts Shannon capacity over α − κ − µ fading
channel and other fading models obtained from it for system with-
out diversity. Results of channel capacity are shown for α − κ − µ,
α− µ, κ− µ, Nakagami-m and Rayleigh fading models. Figure 2 is
obtained by using values from Table 1 and by using equation (16).
Also, Table 1 represents a generality of α − κ − µ fading model.

Figure 3 depicts Shannon capacity over α−κ−µ fading chan-
nel for SC diversity receiver with L branches. Results are shown
for values given in Table 1 and by using equation (19). The Fig-
ure 3 shows that the higher capacity is obtained for SC diversity
receiver. Also, by increasing the number of the branches, channel
capacity is increased.

Figure 4 depicts Shannon capacity over α−κ−µ fading chan-
nel for MRC diversity receiver with L branches. Results are shown
for values given in Table 1 and by using equation (24). The Fig-
ure 4 shows that the higher capacity is obtained for MRC diversity
receiver. Also, by increasing the number of the branches, channel
capacity is increased.

Figure 2. Shannon capacity for α − κ − µ and other fading models
obtained from it.

Figure 3. Shannon capacity for SC diversity system with L
branches.

Table 1. Generality of α − κ − µ fading model

Other fading models obtained from α − κ − µ fading model
α − κ − µ α − µ κ − µ Nakagami-m Rayleigh

α 1 1 2 2 2
κ 1.5 κ → 0 1.5 κ → 0 κ → 0
µ 1.5 1.5 1.5 1.5 1

Figure 5 shows the difference in the achieved capacity when
we use the system without diversity, SC diversity with L branches
and MRC diversity with L branches. The comparison was made
in relation to the number of branches that use diversity systems.
Thus, it can be seen from the Figure 5 that the maximum capac-
ity is reached when the number of branches is L = 3. When we
perform the comparison for the same number of branches but dif-
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ferent diversity systems, we see that the MRC diversity system
gives a better capacity than the SC diversity system. When we ob-
serve a system for L = 2 branches, we see that it gives a smaller
capacity in relation to a system with L = 3 branches, but, more
capacity than a system that does not have diversity. For L = 2
branches, MRC diversity gives better capacity than SC diversity.
Results shown in Figure 5 are obtained from equations (16), (19)
and (24) and parameter values given in Table 1.

Figure 4. Shannon capacity for MRC diversity system with L
branches.

Figure 5. Comparison of Shannon capacity for SC and MRC di-
versity systems with L branches.

With the increase in SNR, capacity of the channel is also
increased. In this paper, Shennon capacity for lower SNR values
on the receiver (from 0− 10dB) in order to represent the influence
of parameters and used diversity techniques on channel capacity is
considered.

CONCLUSION

In this paper, Shannon capacity analysis for α− κ− µ fading
channel by using different system models is presented. Closed-
form expression for probability density function and Shannon ca-
pacity of system without diversity, SC diversity system with L
branches and MRC diversity system with L branches are given.

Numerical results obtained from analytical closed-form ex-
pression are calculated and graphically presented for different
combination of fading parameters and different system models. At
the end, comparison of proposed system models are made.

The higher channel capacity are achieved by using MRC di-
versity system with L branches. The least channel capacity are
achieved for system without diversity. Although it provides less
capacity compared to the MRC diversity, SC diversity is often used
in practice realization for simpler implementation. Also, diversity
systems with more than L = 3 branches are not implemented in
the practical applications because of complexity. Complexity is
reflected in increasing the computational complexity of receiving
and transmitting algorithms, as well as the power required to pro-
cess the signals. A larger number of antennas will also affect the
price of the receiver.
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