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ABSTRACT

Many a paper has been written on the characteristics of the continuous-time and discrete-time low-pass filters which
are designed to have either maximally flat magnitude characteristics or maximally flat group delay responses. The
polynomial (all pole) low pass recursive digital filters which are characterised by characterise the transition between a
flat magnitude and flat group delay characteristics, named Transitional Butterworth Thiran (TBTh) recursive digital
filters, is considered. The characteristics of the resulting filter change gradually from the characteristics of the well
known Butterwort’s filter to the characteristics of the Thiran’s filter with the maximally flat group delay characteris-
tic. Poles of the TBTh filter are obtained by interpolating between poles Butterworth and Thiran’s filters by varying
a parametar which controls the pole positions that enables a tradeoff between the steepness magnitude characteristic
at passband edge and group delay deviation.
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INTRODUCTION

In the field of circuits and system theory, transitional filters
combine the frequency response of two different filters (typically
stopband attenuation and constant group delay types) to achieve a
compromise between attenuation and group delay characteristics.
There are generally two types of transitional filters: transitional fil-
ters combining filter poles and transitional filters combining clas-
sical orthogonal polynomials.

Combining filter poles by means of an interpolation for-
mula results in transitional characteristics. In other words, the
transitional AB (TAB) filters having characteristics that tranzition
smoothly from those of filter A to those of filter B as a design
parameter m is varied from zero to one. The transition is accom-
plished using the method which have been described of Peless
& Murakami (1957), which have found each pole location of the
TBT transfer function in the complex frequency plane. They were
to change the transfer function smoothly from that of the But-
terworth to those of the Thomson filters by varying a parameter
which controls the pole positions. Although a large variety of fil-
ter specifications can be satisfied by an appropriate choice of the
variabile parametar, this class of filters offers no advantages over
Butterworth or Thomson filters in respect of steady-state and tran-
sient responses. Other particular method will operate directly on
the filter poles (Aiello & Angelo, 1974) is transitional Legendre-
Thomson (TLT) whose frequency characteristics can be approxi-
mated in a maximum cutoff rate (Papoulis, 1958) (Legendre) or in
a maximally flat delay sense (Thomson).

In the paper Johnson et al. (1979) have considered transi-
tional rational filters using the interpolation method of Peless and
Murakami to locate both the zeros and poles of the transition fil-

ter. The transitional rational AB filters are obtained by finding each
pole (zero) of the TRAB filter as an interpolation between a pole
(zero) of the A filter and a corresponding pole (zero) of the B filter.
In particular example, A filter is well known inverse Chebyshev
filter, and B filter is Bessel rational filter (Johnson et al., 1976).

Other allpole monotonic filter functions with a mentioned
variable parameter m that enables a tradeoff between the maxi-
mum permissible overshoot and the rise time in the time domain,
so that a large variety of filter specifications can be met in prac-
tical design with a single class of filter functions, are transitional
Halpern-Thomson filters (Lazović & Radmanović, 1975).

These filters share the fact that the transition operation is
performed in the complex s-plane with pole locations bounded by
the two filter responses and they are not suitable for mapping into
discrete time domain.

The mixture of two classical orthogonal polynomials to
generate a new polynomial is an alternative means of generat-
ing transitional filters. These comprise the well-known transi-
tional Butterworth– Chebyshev (TBC) filter, a mixture of But-
terworth and Chebyshev components (Budak & Aronhime, 1971;
Thajchayapong et al., 1978; Roy & Varanasi, 1978). Transitional
ultraspherical-ultraspherical (TUU) filters as a generalization of
the transitional Butterworth-Chebyshev fites is presented in the pa-
per Attikiouzel & Dang (1978).

In addition to the transient filters with simple poles, transi-
tional filters with multiple poles proposed in the papers Stojanović
& Pavlović (1979) and Stojanović & Pavlović (1980). These all-
pole functions, based on the Butterwortth and Chebyshev filters,
have been derived by numerical optimization of the magnitude
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passband response under the constraint of a double or higher-order
multiplicity of the dominant pair of poles.

A technique commonly used in the design of recursive dig-
ital filters is the use of bilinear transformation of continuous-time
filter transfer functions. Moreover, such filters are not the true clas-
sical counterparts in the digital domain. A method for direct com-
puting the poles of transitional all-pole Butterworth-Chebyshev re-
cursive digital filters is presented in the papers Nikolić & Sto-
janović (1996); Stojanović & V. Nikolić (1998); Stojanović &
Nikolić (1993). These filters offer a gradual transition between
Butterworth and Chebyshev filters. Number of transitional filter
is n, where n is the degree of transitional filters.

The main object of this paprr is to introduce a new class of
discrete-time allpole filters with a variable parameter that enables
a tradeoff between the maximally flat passband attenuation (But-
terworth) and the maximally flat group delay (Thiran), so that a
large variety of filter specifications can be met in practical design
with a single class of filter functions.

These linear time-Invariant digital filters, referred to as tran-
sitional Butterworth-Thiran (TBTh) filters, to different from TBT
filtes, provide considerably trade off between constant group de-
lay and attenuation characteristic. The transfer function of certain
TBTh filters has been computed, tabulated and the figures clearly
illystrate the transitional nature of these filters.

SHORT REVIEW OF THE BUTTERWORTH ALLPOLE
IIR DIGITAL FILTERS

The general form of the squared magnitude characteristic,
both in continuous-time and discrete-time domain, of a lowpass
Butterworth filter wityh no transmission zeros (Stojanović et al.,
2014) may be expressed as

|HB(x2)|2 =
1

1 + ε2x2n , (1)

where n is filter degree, x is frequency variable and ε is is a design
parameter that controls the passband loss, known as the passband
edge ripple factor, which is related to the maximal passband atten-
uation amax (in dB), as evidenced by ε =

√
100.1amax − 1. Without

loss of generality, ε2 = 1 can be substituted in (1), then the maxi-
mum passband attenuation is specified as amax = 3 dB.

If frequency variable x is continuous-time angular fre-
quency, x2 = −s2, then function (1) is the magnitude characteristic
of the continuous-time low-pass Butterworth transfer function, be-
cause s = jω at real frequencies.

On the other hand, the discrete-time polynomial filter is de-
signed from the magnitude function (1) by a technique known
as analytic continuation, trough substitution (Stamenković & Sto-
janović, 2014)

x2 7→
sin2 ωT

2

sin2 ωcT
2

= −
(z − 1)2

(2α)2z

∣∣∣∣
z=e jωT

, (2)

where ω is continuous-time angular frequency, ωc is the 3-dB
cutoff frequency, α = sin(ωcT/2) and T is sampling period,

which shows that this transformation leads to the transfer func-
tion with multiple zero at the origin in the z-plane. Substitut-
ing (5) into (1) the discrete-time magnitude squared function
HB(z)HB(1/z)HB(z)HB(1/z) of allpole lowpass Butterworth filter
is obtained as folloes

HB(z)HB(
1
z

) =
zn

d0 + d1z + · · · + d1z2n−1 + d0z2n , (3)

where

di =


(−1)i+nε

(
2n
i

)
1

4αn , za i = 0, 1, . . . , n − 1,

ε

(
2n
n

)
1

4αn + 1, za i = n.
(4)

are the first n + 1 coefficients di in the closed form of the mirror-
image polynomials.

By equating the denominator of (3) with zero, roots will oc-
cur in the mirror-image pairs. Poles of the polynomial IIR Butter-
worth filters HB(z) are merely roots lying inside the unit circle pi,
hence the resulting filter is stable. Thus

HB(z−1) =
h0

z−n + a2z−n+1 + · · · + anz−1 + an+1
, (5)

where h0 =
∑n+1

i=1 ai is a constant that ensures that amplitude
|HB(ω)| is bounded above by unity.

IIR DIGITAL FILTERS WITH MAXIMALLY FLAT
GROUP DELAY

Thiran (1971) developed an analytical method for deriving
the all pole transfer function of the IIR digital filter that approx-
imates a constant group delay in the maximally flat sense. Let τ
be the prescribed group delay, and the allpole transfer function be
chosen in the closed form as

HT (z−1) =

2n!
n!

1
2n∏

i=n+1
(2τ + i)

n∑
k=0

(−1)k

(
n
k

) n∏
i=0

2τ + i
2τ + k + i

z−k

=

n∑
i=0

ai

n∑
i=0

aiz−i
, (6)

whose gain is adjusted to unity at z−1 = 1.
The group delay τT (z−1) of the low-pass filter HT (z−1) is

mirror-image, rational function in z, that can be easily calculated
by employing the following formula

τT (z−1) = −
1
2

[ z
HT (z−1))

H. T (z−1)
z.

−
z

HT (z)
H. T (z)

z.

]
=

1
2

[∑n
i=1 iaiz−i∑n
i=0 aiz−i +

∑n
i=1 iaiz−n+i∑n

i=0 z−n+i

] (7)

For a filter of degree n and with a maximally flat group delay the
first n− 1 derivatives of the group delay with respect to z2 are zero
at z = 1.
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Using (7), it can be derived an expression for the group delay
of transfer function (5) or (6) at z−1 = 1 (ω = 0) as (Stamenković
et al., 2018)

τT (1) = −

∑n
i=0 iai∑n
i=0 ai

(8)

and at z−1 = −1 (ω = π) as

τT (−1) = −

∑n
i=0 i(−1)i+1ai∑n
i=0(−1)i+1ai

(9)

Equations (8) and (9) are valid for all polynomial filters.
Thiran has also shown that the above transfer function is

stable for all finite positive values of τ. Using the above formula,
the coefficients of the denominator polynomial of HT (z−1) for n =

8 (and τ = 2) are tabulated in Table 1.

TRANSFER FUNCTION OF THE TRANSITIONAL FIL-
TER

The poles position of the transitional Butterworth-Thiran
transfer function is determined by defining a real parameter m that
provides a linear variation in the phasorangle of the pole in a rela-
tion involving the corresponding Butterworth and Thiran poles

sk = s1−m
kB sm

kT , for 0 ≤ m ≤ 1 (10)

where sk is the generical pole of the TBTh transfer function, skB

and skT , the Butterworth and Thiran poles, respectively. The posi-
tion of sk varies smoothly, as m increases, from sk = skB for m = 0,
to sk = skT for m = 1. The magnitude and the argument of sk are

|sk | = |skB|
1−m|skT |

m

arg(sk) = arg(skB) − m arg(skB) + m arg(skT )
(11)

Such relations are used to construct the generical TBTh pole from
the corresponding Butterworth and Thiran poles..
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provides a linear variation in the phasorangle of the pole in a rela-
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where sk is the generical pole of the TBTh transfer function, skB

and skT , the Butterworth and Thiran poles, respectively. The posi-
tion of sk varies smoothly, as m increases, from sk = skB for m = 0,
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m

arg(sk) = arg(skB) − m arg(skB) + m arg(skT )
(13)

Such relations are used to construct the generical TBTh pole from
the corresponding Butterworth and Thiran poles.

NUMERICAL RESULTS

The results of the approximation are shown in the two ex-
amples with low pass filters of the eighth and tenth degree.

In the first example the normalized value of the group delay
at the origin of all eight degree filters is two samples. The tran-
sition filter is achieved for m = 0.6. In order to get the proposed
value of group delay at the origin, the 3 dB bandwidth of the But-
terworth filter is adjusted to the value ωcT/π = 0.3163.

For τ = 2, the 3 dB bandwidth of the Thiran filter is
ωpT/π = 0.2322, while the bandwidth of transitional filter is
slightly wider than the Butterworth filter, and it has a value of
ωpT/π = 0.2683. On the other hand, the maximum value of group
delay of the Butterworth filter is 5.33 samples, while the maxi-
mum value of group delay of the transition filter is reduced to 3.22
samples.

Table 1. The coefficients of the Butterworth’s, Thiran’s and TBTh
filters for m = 0.6.

Coef. Butterworth TBTh Thiran
a1 1.0000000 1.0000000 1.0000000
a2 –3.3158176 –2.9408615 –2.4615386
a3 5.4638252 4.3454928 3.0769231
a4 –5.5777755 –4.0307426 –2.4615386
a5 3.7806220 2.5096502 1.3461539
a6 –1.7209603 –1.0589553 –0.5067874
a7 0.5095335 0.2928378 0.1266968
a8 –0.0891724 –0.0481745 –0.0190522
a9 0.0070302 0.0035898 0.0013098
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Figure 1. Plot poles and zeros in the z-plane for the 8th degree
transfer functions whose coefficients are given in Table 1.

Table 1 displays the coefficients of recursive digital low pass
filters of the eighth degree: Butterworth, Thiran and the transi-
tional filter for parameter m = 0.6. In order to compare the charac-
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teristics of TThB filters with those of other filters, the group delay
at z−1 = 1 is taken to be identical, and gain at z−1 = 1 is adjusted
to unity. The verification of the transfer functions design given in
Table 1 can be performed by the Eq. (8)1. The plot poles and ze-
ros in the z-plane of the previously mentioned filters is shown on
Figure 1, while their frequency responses can be seen on Figure 2.
All filters have a zero of the eighth degree at the origin.
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Figure 2. Attenuation and group delay response of the 8th degree
filters.
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Figure 3. Plot poles and zeros in the z-plane for the 10th degree
transfer functions.

In the second example the Butterworth, Chebyshev and tran-
sitional filters of the tenth degree, when all the filters have the same
3 dB bandwidth of ωcT = 0.15π, are compared. Figure 3 shows
the zero and pole position in the z-plane, and Figure 4 shows the
corresponding frequency responses for all three transfer functions.

1 For all transfer functions given in Table 1 the group delay at
origin is τ(1) = 2.
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Figure 4. Attenuation and group delay response of the 10th degree
filters. The 3-dB cut off frequency is ωcT = 0.15π.

Figure 4 shows that for higher values the parameter m
achieves a good compromise between stopband attenuation and
group delay distortion. On the normalized frequency ω = 0.2π at-
tenuation of the transition filter rises from 5.49 dB for the TBTh
filter, to 11.94 dB. The change in group delay of the transition
filter is 5.69 samples, which is considerably lower compared to
the changes in group delay of the Butterworth filter which is
11.92 samples.

CONCLUSIONS

In this paper, a simple method of approximation of transi-
tional Butterworth-Thiran (TBTh) recursive digital filters is pro-
posed. By changing one parameter, the characteristics of these fil-
ters change continually from the characteristics of a Butterworth
which is maximally flat in the passband filter to those of a Thiran
filter which have maximally flat group delay. If we allow for slight
deviation of the group delay characteristic from the constant value,
the filter stopband attenuation can be significantly increased. In
this way, a compromise between the phase distortion in the band-
width and stop band attenuation can been found.

Keeping in mind that the proposed approximation belongs in
the class of auto-regressive (AR) filters, further research includes
approximation of the ARMA (Auto Regressive Moving Average)
recursive digital filters with maximally flat group delay. In other
words, Thirans filter can be expanded using an FIR amplitude cor-
rector, with which it will be possible to preserve the maximally flat
group delay of Thirans filter, and improve attenuation in both the
passband and in stopband.
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