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ABSTRACT 

The paper takes into consideration dual-branch selection combining (SC) diversity reception technique in the 

presence of dissimilar fading at their branches. We efficiently obtained first and second order closed form 

statistics at the output of the considered model such as probability density function (PDF), cumulative distribution 

function (CDF) and average level crossing rate (aLCR). Moreover, obtained results are numerically presented for 

various sets of system model parameters and mainly confirmed by computer based MATLAB simulations.  
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INTRODUCTION 

Fast fading (multipath) has a large impact on the error 

probability of a wireless telecommunications systems, as well as 

on the channel information capacity. What kind of distribution 

will be used to describe the wireless channel in the presence of 

the fading depends on: i.) whether there is a dominant 

component, ii.) whether the conditions at the reception have been 

met that satisfy a central limit theorem, iii.) whether environment 

has one or multiple clusters and etc. The most commonly used 

distributions are Rayleigh, Rice, Nakagami-m, η-μ, α-μ, and κ-μ 

(Simon & Alouini, 2000; Panic et al., 2017; Nakagami, 1960; 

Yacoub, 2007; Djosic et al., 2016; Stefanović & Đošić, 2016). 

Various diversity techniques are used to reduce the impact of the 

fast fading on the system performances. Diversity techniques, 

due to their ability to minimize the effects of fading, are one of 

the most adequate ways to improve the reliability of the 

transmission without increasing transmission power and 

bandwidth. There are several types of diversity combining 

techniques whose division can in general be made depending on 

the constraints regarding the complexity of the communication 

systems and the availability of channel status information (CSI) 

at the receiver (Simon & Alouini, 2000; Panic et al., 2017). 

Selection combining (SC) receiver is one of the simplest 

and mainly used diversity combining techniques. The SC 

receiver may have two, three or more inputs. In the case where 

the SC receiver has two inputs, the signal at the output is equal to 

the stronger signal at their inputs. Hardware solution of a 

commercial SC combiner with two inputs is shown in Fig. 1. 

(Analog Devices, 2015). 

Regardless of the fact that other diversity techniques can 

provide better results (for example, maximal ratio combining and 

equal gain combining) (Simon & Alouini, 2000; Panic et al., 

2017), SC technique due to its simplicity has important 
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application in various wireless communications systems. The 

papers (Milic et al., 2016; Stefanović et al., 2013; Panajotović et 

al., 2013) consider first and second order performance analysis 

of dual branch SC receiver in the presence of co-channel 

interference. In paper, referenced as (Stefanović & Đošić, 2016), 

the macro-diversity system is considered with SC reception at 

micro-level. Moreover, the paper (Djosic et al., 2016; Stefanovic 

et al., 2017) consider second order statistics of macro-diversity 

systems with SC at micro-level as well as at macro-level. The 

vehicle-to-vehicle (V2V) cooperative relay wireless 

communications over fading channels with SC are considered in 

(Stefanović et al., 2018; Bithas et al., 2016) while high speed 

train (HST) wireless communications with selection techniques 

are investigated in (Laiyemo et al., 2017). Some further insights 

in selection scheme strategies for wireless transmission are 

provided in (Swaminathan et al., 2016; Yılmaz & Kucur, 2014; 

Stefanovic, 2017). 

 

Figure 1. Evaluation board of a commercial dual-branch SC 

combiner hardware implementation.  

This paper analyses SC receiver with two inputs in the 

presence of Nakagami-m fading on one branch and α-μ fading on 

the other branch. Probability density function (PDF), cumulative 
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density function (CDF), moments, joint probability density 

function  and level crossing rate (aLCR) of the proposed SC 

system are calculated, as the closed form expressions and 

numerically evaluated for various system model set of 

parameters. Moreover, some obtained results are confirmed by 

MATLAB simulations. 

SYSTEM MODEL 

In this section, we consider SC receiver with two inputs. At 

the first input Nakagami-m multipath fading is presented while at 

the second input α-µ fading is presented. The block scheme 

system model is presented in Fig. 2.  

 

Figure 2. SC block scheme reception with two inputs. 

Signals at the inputs are denoted with x1 and x2. The output 

signal is denoted with x. The Nakagami-m distribution describes 

the signal envelope in linear environments (Nakagami, 1960), 

while the α-μ distribution describes signal envelope in 

environment whose dispersion field is not homogeneous 

(Yacoub, 2007). The probability density function of Nakagami-m 

random variable x1 is (Simon & Alouini, 2000; Panic et al., 2017; 

Nakagami, 1960): 
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where m1 is fading severity parameter, Ω1 is mean power. The 

cumulative distribution function of x1 is obtained by integration 

of Nakagami-m probability density function (Simon & Alouini, 

2000; Panic et al., 2017; Nakagami, 1960):   
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The n-th order moment of x1 or the mean n-th value is equal 

to (Gradshteyn & Ryzhik, 2000): 
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The first and second moments of Nakagami-m random 

variable are: 
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where Ω1 is by definition the mean square value. The first 

moment is the mean value, and the second moment is the mean 

square value. The third-order moment is equal to: 
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Relations can be formed between the usual moments and 

central moments. 

The variance is equal to the difference between the mean 

square value and the mean value per square. The variation of x1 

is: 

1

2
2 2
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The joint probability density function from Nakagami-m 

random process and its first derivative can be obtained as 

follows. The square of Nakagami-m random process is equal to 

the sum of 2m square Gauss random variables with zero mean 

values and with the same variations. The variable x2 has χ2 

distribution (Simon & Alouini, 2000; Panic et al., 2017; 

Nakagami, 1960). Based on this, x has a Nakagami-m 

distribution: 
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The first derivative of x is:  
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The first derivative of Gaussian random variable is 

Gaussian random variable. A linear combination of Gaussian 

random variables is Gaussian random variable. On this basis the 

first derivative of x has Gaussian distribution (Middleton, 1960). 

The mean value is: 
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The mean values of Gaussian first derivatives are equal to 

zero: 1 2 2... 0.mx x x       

The variance of x is obtained as the variance summation of 

each member. The variance of x is equal to the product of the 

square of the constant and the square of the variance of the 

random variable. Based on this: 
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where, 
1 2 2
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The variance of the first derivative is equal to the product of
 

2 2

mf  a and standard deviation σ2, the standard deviation is equal 

to the ratio, 1 1m . By substitution: 
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The probability density function of x  is Gaussian, since the 

linear combination of Gaussian random variables is a Gaussian 

(Middleton, 1960): 
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where 2

x   is a variance of Gaussian x  distribution. 

Random variables x and x  are mutually independent. This 

can be proved numerically. Based on this, joint probability 

density function of x and x  is equal to the product of a 

Nakagami-m random variable and a Gaussian random variable. 
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To determine the average level crossing rate (aLCR) of the 

random process, the joint probability density function of the 

random variable and the first derivative of the random variable 

should be determined. The aLCR of x1 can be calculated as mean 

of the random process (Simon & Alouini, 2000; Panic et al., 

2017): 
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where:
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The random variable x2 follow an α-μ distribution. The 

distribution describes signal in a nonlinear and non-

homogeneous environment (Simon & Alouini, 2000; Panic et al., 

2017; Yacoub, 2007) 
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The relation between x1 and x2 is: 
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In this case, x1 follows a Nakagami-m distribution, and x2 

follows an α-μ distribution. The following relation is between 

Nakagami-m and α-μ distribution, m=μ. The cumulative 

distribution probability of x2 is obtained by integrating the 

Nakagami-m distribution (Simon & Alouini, 2000; Nakagami, 

1960):  
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The n-th order moment of x2 is (Simon & Alouini, 2000): 
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The mean value for the α-μ random variate is obtained for 

n=1: 
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The mean squared value for the α-μ random variate is 

obtained for n=2: 
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The joint probability density function of α-μ random 

variable and the first derivative of α-μ random variable is 

obtained by following transformations (Panic et al., 2017; 

Yacoub, 2007): 
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The joint probability density function of α-μ random 

variable and the first derivative of α-μ random variable can be 

used to calculate the aLCR of α-μ random process. The joint 

probability density function of x2 is: 
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where J is the Jacobian of the transformation, given as: 
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By substitution, the combined probability density function 

of the α-μ random variable and the first derivative of the α-μ 

random variable is obtained: 
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The aLCR of x2 is obtained as the mean of the first 

derivative of the α-μ random variable x2. The aLCR of the signal 

at the second input of the SC receiver is (Simon & Alouini, 

2000; Panic et al., 2017): 
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The signal probability density function at the output from 

the SC receiver is obtained as follows. Signal at the output of the 

SC receiver is received as a signal from the first input when this 

signal is greater than the signal at another input or as a signal 

from another input when the signal at the second input is greater 

than the signal at the first input. The signal probability at the 

output from the SC receiver is calculated using the formula: 
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The cumulative probability at the output from the SC 

receivers with two inputs is obtained as a product of cumulative 

probability from the first and second inputs: 
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where γ (n, x) is an incomplete Gama function, n is the order of 

Gama function, and x is the argument (Gradshteyn & Ryzhik, 

2000). 

Moments are important features of the telecommunication 

random signals. The n-th moment of the signal at the output from 

the SC receiver can be calculated as: 
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The joint probability density function at the output from the 

SC receiver and its first derivative is:  

         

   

 

 

1 1 2 2 2 1

2

1 21
2

1 1 1

1

2 2

2 2

2
2 2

2

1

2

22 11

1 1 2

2
2 22 2

2

2 2 2

4 21

1

1 1

2 1 1

2

,
2

1 1
, .

2

x

x

xx x x x x x x

xm m
x

m

x

m m
x

m

x x

x

p xx p xx F x p xx F x

m
x e e

m m

m m
m x x e

m

m
e m x

m







 
















 


  



  

 
  
   

   
    

     

 
  

  





  









  

  (30) 

The previous expression can be used to determine the 

average level crossing rate (aLCR). 

The aLCR of the signal at the output of the SC receiver is 

calculated as the mean of the first derivative of the output signal 

of the SC receiver. Averaging is done as the integration of the 

product of the first derivative and the joint probability. The 

aLCR of x is: 
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(31) 

NUMERICAL RESULTS 

The numerical results are obtained, on the basis of 

expression (27), and are graphically shown in Figure 3. 

Moreover, analytical results are confirmed by MATLAB 
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simulations. The signal probability density function at the output 

from the SC receiver with two inputs depending on the signal 

envelope is shown with the constant coefficient of non-linearity 

of the parameter α, and for different values of the number of the 

cluster μ, the Nakagami-m fading severity m and the mean values 

of the signal Ω1 and Ω2. The increase of the severity fading 

parameter m and the number of clusters μ results in narrowing 

the range of the function at the reception, as well as increasing 

the maximum value achieved for higher values of the received 

signal level. Increasing the value of the mean signal power Ω1 

and Ω2 results in the expansion of function range of the signal 

probability function, as well as the reduction of the maximum 

value, which also confirms the simulation. 

 

Figure 3. Graphical representation of PDF at the output from the 

SC receivers with two inputs versus the signal envelope, for 

different number of cluster μ, the fading severity m and the mean 

powers of the signals Ω1 and Ω2. 

The numerical and simulation results for CDF are obtained, 

and based on expression (28), are graphically plotted versus the 

envelope signal in Figure 4. The cumulative probability of the 

signal at the output from the SC receiver with two inputs is 

shown with the same non-linearity coefficient parameter α, and 

for different values of the number of clusters μ, Nakagami-m 

fading severity m and mean powers of signal Ω1 and Ω2. Based 

on analytical expressions, numerical and computer simulation of 

the obtained results, it can be concluded that with the increase in 

the amplitude of the signal x, the cumulative probability tends to 

one. The growth of the cumulative probability is more dominant 

for the higher values of the parameters, μ and m. Furthermore, 

with the increase in the mean power values of the signals Ω1 and 

Ω2, CDF decreases.  

Using the expression (31), in Figure 5. the normalized 

aLCRis graphically depicted, versus the normalized envelope of 

the signal x and the square root of the mean power of the signal 

Ω, where Ω=Ω1=Ω2. The figure is presented with the constant 

values of the fading severity parameter m, and for different 

values of the nonlinearity parameter α as well as for different 

values of the clusters μ. The maximum of the aLCR is higher for 

the higher values of the clusters μ. Moreover, with the increase in 

α and μ, the aLCR decreases faster, since less variation of the 

output signal can be observed. 

 

Figure 4. Graphical representation of the numerical results of the 

CDF signals at the output from the SC receiver with two inputs 

versus signal envelope, for different cluster values μ, fading 

severity m and with different mean signal powers Ω1 and Ω2. 

 

Figure 5. Normalized average number of crossing rates of the 

signal at the output from the SC receiver with two inputs versus 

normalized envelope signal, for the different values of the non-

linear coefficient α and the number of clusters μ, and for the 

constant m. 

In Figure 6. the normalized aLCR is shown graphically, 

versus the envelope of the signal xi normalized by the square 

root of the signal power Ω, where Ω=Ω1=Ω2, with equal values 

of the clusters μ, and for the different values of the nonlinearity 

parameter α as well as with different values of fading severity 
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parameter m. The maximum of the aLCR is more likely to be 

higher for the higher m. With the rise in the parameter α and m, 

the aLCR decreases faster, since less variation of the signal can 

be noticed. 

 

Figure 6. Normalized aLCR of the signal at the output from the 

SC receiver with two inputs versusthe envelope signal, for 

different values of the fading severity parameter m and the non-

linearity coefficient α.  

CONCLUSION 

This paper considers first and second order performance 

measures of dissimilar dual-branch SC reception in the presence 

of Nakagami-m and α-µ multipath fading at their asymmetric 

inputs. The closed form expressions for PDF, CDF, moments, 

JPDF and aLCR are derived and numerically presented for 

various values of system parameters. Moreover, the obtained 

results are verified by MATLAB simulations. It can be 

concluded, that for higher values of non-linearity parameter α, 

number of clusters µ as well as fading severity parameter m, the 

system performances in general can be improved. Our future is 

going to consider performance measures of dissimilar multi-

branch SC reception. 
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