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1Faculty of Ekonomy, University of Priština, Kosovska Mitrovica, Serbia
2Faculty of Natural Sciences and Mathematics, University of Priština, Kosovska Mitrovica, Serbia

ABSTRACT

The oscillation criteria of different types of differential equations are often the topic of numerous scientific papers,
because their application in nuclear physics, fluid mechanics, relativistic mechanics, the study of chemical reactions
in the system and in general are large in science. In this paper, the oscillation criteria using averaging functions
of the half-linear differential equation are generalized to the half-linear differential equation with delay, under the
appropriate assumptions for the delay function. Suitable examples illustrate the application of set oscillation criteria.
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INTRODUCTION

Part of the qualitative analysis of differential equations is particu-
larly intense in the last thirty years. During this time, new testing
methods were developed and important and useful results were
obtained. Probably the highest-studied differential equation of the
second order is the Sturm-Liouville linear differential equation of
the second order:

(L)
[
p (t) u′ (t)

]′
+ q (t) u (t) = 0

In the last decade of the last century, significant progress was made
in determining the qualitative similarity of the solution of the equa-
tion (L) and the second-order half-linear differential equation:

(HL)
[
p (t) Φ

(
u′ (t)

)]′
+ q (t) Φ (u (t)) = 0

where q ∈ C([t0,∞)), p ∈ C1([t0,∞); (0,∞)),Φ : R → R defined
by Φ (s) := |s|α−1 s, α > 0 is a constant. Especially it is necessary
to point out the articles of Mirzov (Mirzov, 1976) and Elbert (El-
bert, 1979), who first established that the equations (L) and (HL)
have similar properties describing the character of the oscillations
solutions.

Between the large number of oscillation criteria shown us-
ing averaging functions, it can be noted that as a weight function
is the most frequently used or positive, continuous differentiable
function ρ, such that ρ′ is a nonnegative and decreasing function,
or the function (t − s)α for α is a natural or real number greater
than the unit, or product of these functions. Articles Philos (Philos,
1989) and Li (Li, 1995) on the oscillatory of a linear differential
equation were given a positive answer to the question posed by the
mathematicians who dealt with this problem - can a wider family
of functions be used as a weight function?

Ten years later, J. Manojlović, who made an outstanding
contribution to the whole theory of the oscillation of differential

equations, announces the paper (Manojlović, 1999) in which one
step further.

In the last years of the last century, the attention of the author
has attracted a second-order differential equation known as half-
linear differential equation with a delay of form:

(RHL)
[
p (t)

∣∣∣u′ (t)∣∣∣α−1
u′ (t)

]′
+ q (t) |u (τ (t))|α−1 u (τ (t)) = 0

where α > 0 is a constant, and functions p(t), q(t), τ(t) which sat-
isfy the conditions:

(a) p ∈ C1 ([t0,∞); [0,∞)) , p′ (t) > 0, na [t0,∞);

(b) q ∈ C ([t0,∞); [0,∞)) ;

(c) τ ∈ C1 ([t0,∞); [0,∞)) , τ (t) 6 t, na [t0,∞), lim
t→∞

τ (t) = ∞;

(d) lim
t→∞

t∫
t0

p−
1
α (s) ds = ∞.

By studying these equations, led to the conclusion that there is
a certain qualitative similarity of its solutions and solutions of the
equation (HL). The contribution to this study is given in the papers
(Hsu & Yeh, 1996), (Kusano & Naito, 1997), (Kusano & Wang,
1995), (El-Sheikh & Sallam, 2000) and (Wang, 1997).

In this paper, the given oscillatory criteria using averaging
functions (HL) given in the paper (Manojlović, 1999), will be gen-
eralized to the equation (RHL).

MAIN RESULTS

Given the differential equation (RHL), in which the functions p, q
and τ satisfy the conditions (a) − (d).
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Theorem 1. The equation (RHL) is an oscillatory if exist constant
λ ∈ (0, 1) and function H ∈ H+(D) such that it is:

(C1) lim
t→∞

1
H (t, t0)

·

·

t∫
t0

[
q (s) H (t, s)

(
τ (s)

s

)α
−

p (s) hα+1 (t, s)
λ (α + 1)α+1 Hα (t, s)

]
ds = ∞

where is
h (t, s) = −

∂H (t, s)
∂s

.

Proof. Suppose the opposite, that there exists a nonoscillatory so-
lution of u(t) of equation (RHL). According to Lemma 1.1. from
(Bojičić, 2015), there exists T0 > t0 such that u (t) > 0, u (τ (t)) >
0, u′ (t) > 0 ∧ u′′ (t) 6 0 for ∀ t > T0.

We define in [T0,∞) function w as:

w (t) =
p (t) (u′ (t))α

uα (t)
. (1)

From here we have:

w′ (t) =

[
p (t) (u′ (t))α

]′
uα (t)

−
αp (t) (u′ (t))α+1

uα+1 (t)

=
−q (t) (u (τ (t)))α

uα (t)
− αp (t)

[
w (t)
p (t)

] α+1
α

.

According to Lemma 1.2. (Bojičić, 2015), for every µ ∈ (0, 1), we
obtain [

u (τ (t))
u (t)

]α
> λ

(
τ (t)

t

)α
, t > T0

where is λ = µα ∈ (0, 1) . Hence, we have

w′ (t) 6 −q (t) λ
(
τ (t)

t

)α
− α

w
α+1
α (t)

p
1
α (t)

, t > T0. (2)

If we multiply last inequality by H(t, s), and integrate it from T to
t for T > T0, we get:

t∫
T

w′ (s) H (t, s) ds 6

−

t∫
T

λq (s)
(
τ (s)

s

)α
H (t, s) ds −

t∫
T

α
w

α+1
α (s)

p
1
α (s)

H (t, s) ds. (3)

Using integration by parts, we have

t∫
T

w′ (s) H (t, s) ds = w (s) H (t, s)
∣∣∣s=t
s=T−

t∫
T

w (s)
∂H (t, s)
∂s

ds =

= −w (T ) H (t,T ) +

t∫
T

w (s) h (t, s) ds,

so that from equality (3) we obtain

λ

t∫
T

q (s)
(
τ (s)

s

)α
H (t, s) ds 6 (4)

6 w (T ) H (t,T ) −

t∫
T

w (s) h (t, s) ds − α

t∫
T

w
α+1
α (s)

p
1
α (s)

H (t, s) ds .

If we use a inequality Hardly, Littewood & Polya (Hardly et al.,
1988) and put

X = [αH (t, s)]
α
α+1

w (s)

p
1
α+1 (s)

Y =
α

α
α+1

(α + 1)α
p

α
a+1 (s) hα (t, s)

H
α2
α+1 (t, s)

γ =
α + 1
α

= 1 +
1
α
> 1,

we get

w (s) h (t, s)−
αH (t, s) w

α+1
α (s)

p
1
α (s)

6
p (s) hα+1 (t, s)

(α + 1)α+1 Hα (t, s)
, t > s > T0.

Therefore, for t > T > T0 is valid inequality

λ

t∫
T

q (s)
(
τ (s)

s

)α
H (t, s) ds 6

w (T ) H (t,T ) +

t∫
T

p (s) hα+1 (t, s)
(α + 1)α+1 Hα (t, s)

ds. (5)

Since H ∈ H+, i.e. monotonically non-increasing by s, then for
every t > T0 > t0

H(t, t0) > H(t,T0).

Therefore, from (5) we obtain

λ

t∫
T0

q (s)
(
τ (s)

s

)α
H (t, s) ds 6

w (T0) H (t,T0) +

t∫
T0

p (s) hα+1 (t, s)
(α + 1)α+1 Hα (t, s)

ds

6 w (T0) H (t, t0) +

t∫
t0

p (s) hα+1 (t, s)
(α + 1)α+1 Hα (t, s)

ds,

whence we conclude

λ

t∫
t0

q (s)
(
τ (s)

s

)α
H (t, s) ds =

λ

T0∫
t0

q (s)
(
τ (s)

s

)α
H (t, s) ds + λ

t∫
T0

q (s)
(
τ (s)

s

)α
H (t, s) ds

6 λH (t, t0)

T0∫
t0

q (s)
(
τ (s)

s

)α
ds + H (t, t0) |w (T0)|+

t∫
t0

p (s) hα+1 (t, s)
(α + 1)α+1 Hα (t, s)

ds, t > T0.
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From the last inequality it is obvious that:

lim
t→∞

sup
1

H (t, t0)

t∫
t0

[
q (s) H (t, s)

(
τ (s)

s

)α
−

p (s) hα+1 (t, s)
λ (α + 1)α+1 Hα (t, s)

]
ds

6

T0∫
t0

q (s)
(
τ (s)

s

)α
ds +

w (T0)
λ

.

According to the condition (C1), we obtain a contradiction. Hence,
the equation (RHL) doesn’t have nonoscillatory solutions, i.e. its
equation is oscillatory.

Corollary 2. Equation (RHL) is oscillatory if exist function H ∈
H+(D) such that hold conditions:

lim
t→∞

sup
1

H (t, t0)

t∫
t0

p (s) hα+1 (t, s)
Hα (t, s)

ds < ∞

and

lim
t→∞

sup
1

H (t, t0)

t∫
t0

q (s)
(
τ (s)

s

)α
H (t, s) ds = ∞.

In order to illustrate the previously proven criteria, we con-
sider the following example:

Example 3. Consider the differential equation:

(E1)
[
tν

∣∣∣u′ (t)∣∣∣α−1
u′ (t)

]′
+ tµ

∣∣∣∣∣u ( t
3

)∣∣∣∣∣a−1
u
( t
3

)
= 0

where is ν, α, µ are arbitrary constants that satisfy the conditions
µ > 0 and 0 6 ν < α , 2. We check the conditions of Theorem 1:

p (t) = tν > 0, ∀t > t0, ν > 0;

p′ (t) = νtν−1 > 0 jer je ν > 0;
t∫

t0

ds

p
1
α (s)

=

t∫
t0

ds
s
ν
α

=
1

1 − ν
α

s1− ν
α

∣∣∣t
t0

=
α

α − ν
s1− ν

α

∣∣∣t
t0
−→
t→∞
∞

Let H (t, s) = (t − s)2 weight function. Then:

h (t, s) = −
∂H (t, s)
∂s

= 2 (t − s) > 0, t > s > t0

It remains to be determined whether the condition (C1) is valid:

1
t2

t∫
t0

[
q (s) H (t, s)

(
τ (s)

s

)α
−

p (s) hα+1 (t, s)
λ (α + 1)α+1 Hα (t, s)

]
ds

=
1
t2

t∫
t0

[
sµ (t − s)2 1

3α
−

sν2α+1 (t − s)α+1

λ (α + 1)α+1 (t − s)2α

]
ds

=
1

3αt2

t∫
t0

sµ (t − s)2 ds −
2α+1

t2

t∫
t0

sν (t − s)1−αds

>
tµ0

3αt2

t∫
t0

(t − t0)2 ds −
2α+1tν

t2

t∫
t0

sν (t − s)1−αds

=
tµ0

3α+1t2 (t − t0)3 −
2α+1

t2−ν

1
2 − α

(t − t0)2−α

=
tµ0 t3

3α+1

(
1 −

t0
t

)3
−

2α+1

2 − α
1

tα−ν

(
1 −

t0
t

)2−α
−→
t→∞
∞,

where, due to the arbitrariness of constants λ ∈ (0, 1) we take
λ =

(
1
α+1

)α+1
.

Consequently, condition (C1) is satisfied, hence from here
follows equation (E1) is oscillatory by Theorem 1.

Theorem 4. Suppose there is a function H ∈ H̃(D) such that the
following condition is satisfied:

(C2) lim
t→∞

sup
1

H (t, t0)

t∫
t0

p (s) hα+1 (t, s)
Hα (t, s)

ds < ∞.

If exist constant λ ∈ (0, 1) and function ϕ ∈ C([to,∞)) such that:

(C3) lim
t→∞

sup
1

H (t,T )
·

t∫
T

[
q (s) H (t, s)

(
τ (s)

s

)α
−

p (s) hα+1 (t, s)
λ (α + 1)α+1 Hα (t, s)

]
ds > ϕ (T )

for every T > t0 and

(C4)

∞∫
t0

ϕ
α+1
α

+ (s)

p
1
α (s)

ds = ∞,

then equation (RHL) is oscillatory.

Proof. We suppose that there exists a solution u(t) of equation
(RHL) such that u(t) > 0, t > T0. Defining the function w(t) as in
the proof of Theorem 1, we get (4) and (5), for every t > T > T0

Then, for (5), we have

ϕ (T ) 6 lim
t→∞

sup
1

H (t,T )
·

·

t∫
T

[
q (s) H (t, s)

(
τ (s)

s

)α
−

p (s) hα+1 (t, s)
λ (α + 1)α+1 Hα (t, s)

]
ds 6

w (T )
λ

Therefore, it is true that:

ϕ (T ) 6
w (T )
λ

, for every T > T0. (6)

Now, we can conclude:

lim
t→∞

sup
1

H (t,T0)

t∫
T0

q (s) H (t, s)
(
τ (s)

s

)α
ds > ϕ (T0) . (7)

We define functions

F (t) :=
1

λH (t,T0)

t∫
T0

w (s) h (t, s) ds, t > T0
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and

G (t) :=
α

λH (t,T0)

t∫
T0

w
α+1
α (s)

p
1
α (s)

H (t, s) ds, t > T0.

Then, by (4) and (7) we see that

lim inf
t→∞

[G (t) − F (t)] 6
w (T0)
λ
− (8)

− lim sup
t→∞

1
H (t,T0)

t∫
T0

q (s) H (t, s)
(
τ (s)

s

)α
ds

6
w (T0)
λ
− ϕ (T0) < ∞.

It remains to be proved

∞∫
T0

|w (s)|
α+1
α

p
1
α (s)

ds < ∞. (9)

If we suppose that (9) fails, there exists T1 > T0 such that

t∫
T0

|w (s)|
α+1
α

p
1
α (s)

ds >
µ

αξ
for t > T1, (10)

where µ > 0 is arbitrary number, and ξ is a positive constant, such
that

inf
s>T0

(
lim inf

t→∞

H (t, s)
H (t, t0)

)
> ξ > 0. (11)

Then we have

G (t) =
α

λH (t,T0)

t∫
T0

w
α+1
α (s)

p
1
α (s)

H (t, s) ds =

=
α

λH (t,T0)

t∫
T0

H (t, s) d


s∫

T0

w
α+1
α (δ)

p
1
α (δ)

dδ

 =

=
α

λH (t,T0)

H (t, s)

s∫
T0

w
α+1
α (δ)

p
1
α (δ)

dδ


∣∣∣∣∣∣∣∣∣
s=t

s=T0

−

−
α

λH (t,T0)

t∫
T0

∂H (t, s)
∂s


s∫

T0

w
α+1
α (δ)

p
1
α (δ)

dδ

 ds =

= −
α

λH (t,T0)

t∫
T0

∂H (t, s)
∂s


s∫

T0

w
α+1
α (δ)

p
1
α (δ)

dδ

 ds

> −
α

λH (t,T0)

t∫
T1

∂H (t, s)
∂s


s∫

T0

w
α+1
α (δ)

p
1
α (δ)

dδ

 ds

> −
µ

λξH (t,T0)

t∫
T1

∂H (t, s)
∂s

ds = −
µ

λξH (t,T0)
H (t, s)|s=t

s=T1

=
µ

λξ

H (t,T1)
H (t,T0)

=
µ

ξ

H (t,T1)
H (t,T0)

, for all t > T1 > T0,

where with µ we denote µ =
µ
λ
. By (11) there is a T2 > T1 such

thate H(t,T1)
H(t,T0) > ξ for all t > T2, we conclude that

G (t) > µ, for all t > T2.

Since µ =
µ
λ
, and µ is arbitrary number, we get

lim
t→∞

G (t) = ∞. (12)

Consider now the number sequence {σn}
∞
n=1 in (T0,∞) such that

lim
n→∞

σn = ∞

and

lim
n→∞

[G (σn) − F (σn)] = lim inf
t→∞

[G (t) − F (t)] < ∞.

Then, there exists a constant M such that for all sufficiently large
n holds:

G (σn) − F (σn) 6 M. (13)

Since (12) ensures that

lim
n→∞

G (σn) = ∞, (14)

and (13) implies
lim
n→∞

F (σn) = ∞. (15)

From equations (14) and (15), for sufficiently large n, we derive:

F (σn)
G (σn)

− 1 > −
M

G (σn)
> −

1
2
,

i.e. F(σn)
G(σn) > 1. Therefore, by using (15), we get:

lim
n→∞

Fα+1 (σn)
Gα (σn)

= ∞. (16)

On the other hand, by Hölder’s inequality, for every n ∈ N we have

F (σn) =
1

λH (σn,T0)

σn∫
T0

w (s) h (σn, s) ds =

=
1
λ

σn∫
T0

 α
α
α+1

H
α
α+1 (σn,T0)

w (s) H
α
α+1 (σn, s)

p
1
α+1 (s)

·
·

 α−
α
α+1

H
1
α+1 (σn,T0)

h (σn, s) p
1
α+1 (s)

H
α
α+1 (σn, s)

 ds

6
1
λ

 α

H (σn,T0)

σn∫
T0

w
α+1
α (s) H (σn, s)

p
1
α (s)

ds


α
α+1

·

·

 1
ααH (σn,T0)

σn∫
T0

p (s) hα+1 (σn, s)
Hα (σn, s)

ds


1
α+1

=
1
λ

(
1
λ

)− α
α+1

G
α
α+1 (σn)

 1
ααH (σn,T0)

σn∫
T0

p (s) hα+1 (σn, s)
Hα (σn, s)

ds


1
α+1

,
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which gives

Fα+1 (σn)
Gα (σn)

6
1

λααH (σn,T0)

σn∫
T0

p (s) hα+1 (σn, s)
Hα (σn, s)

ds

6
1

λααH (σn, t0)

σn∫
t0

p (s) hα+1 (σn, s)
Hα (σn, s)

ds.

So, because of (16), we have

lim
n→∞

1
H (σn, t0)

σn∫
t0

p (s) hα+1 (σn, s)
Hα (σn, s)

ds = ∞

i.e.

lim
t→∞

1
H (t, t0)

t∫
t0

p (s) hα+1 (t, s)
Hα (t, s)

ds = ∞,

and this is in contradiction with the condition (C2). Therefore, (9)
holds. Now, from (6), we obtain

∞∫
t0

ϕ
α+1
α

+ (s)

p
1
α (s)

ds 6

T0∫
t0

ϕ
α+1
α

+ (s)

p
1
α (s)

ds + λ−
α+1
α

∞∫
T0

w
α+1
α (s)

p
1
α (s)

ds < ∞

which contradicts with the condition (C4). This completes the
proof.

Since Theorem 4 can be applied in certain cases where it
is not possible to apply Theorem 1, the two oscillatory criteria
are independent of each other. One such case is described in the
following example.

Example 5. Consider the differential equation

(E2)
[
tν

∣∣∣u′ (t)∣∣∣α−1
u′ (t)

]′
+

(k + 1)α−1

t

∣∣∣∣∣u ( t
3

)∣∣∣∣∣α−1
u
( t
3

)
= 0

for t > t0, where k, ν, α are constants such that k > 0, ν < α, α > 2.
If for the weight function we take the function H (t, s) =

(t − s)2 and constant λ =
(

1
α+1

)α+1
, we can determine that the con-

dition (C1) does not apply. Indeed, for t > t0, we have:

1
t2

t∫
t0

[
q (s) H (t, s)

(
τ (s)

s

)α
−

p (α) hα+1 (t, s)
λ (α + 1)α+1 Hα (t, s)

]
ds >

1
t2

t∫
t0

[
(k + s)α−1

s
(t − s)2

(
1
3

)α]
ds −

2α+1

t2 tν
t∫

t0

(t − s)1−αds >

1
t23α

(k + t0)α−1

t
(t − t0)3

3
−

2α+1

t2 tν
1

2 − α
(t − t0)2−α >

tα−1
0

3α+1

(
1 −

t0
t

)3
−

2α+1

(2 − α) tα−1

(
1 −

t0
t

)2−α
−→
t→∞

c = const < ∞.

Hence, condition (C1) is not satisfied, so we can not apply Theo-
rem 1. We check that the conditions (C2), (C3) and (C4) applies:
(C2)

lim sup
t→∞

1
t2

t∫
t0

p (s) hα+1 (t, s)
Hα (t, s)

ds = lim sup
t→∞

1
t2

t∫
t0

sν (t − s)1−α ds

6 lim sup
t→∞

tν

t2 (2 − α)
(t − t0)2−α

= lim sup
t→∞

1
2 − α

1
tα−ν

(
1 −

t0
t

)2−α
< ∞

(C3)
1
t2

t∫
T

[
q (s) H (t, s)

(
τ (s)

s

)α
−

p (s) hα+1 (t, s)
λ (α + 1)α+1 Hα (t, s)

]
ds

>
Tα−1

3α+1 −
2α+1

(2 − α) tα−ν

(
1 −

T
t

)2−α

>
Tα−1

3α+1 = ϕ (T ) > 0

(C4)

∞∫
t0

ϕ
α+1
α (s)

p
1
α (s)

ds =

=

∞∫
t0

s
α+1
α

(α−1)3
α+1
α

(−1−α)

s
ν
α

ds =
1

3
(α+1)2
α

∞∫
t0

s
α2−1
α −

ν
α ds = ∞

for α2 − 1 − ν > 0, i.e. for ν < α2 − 1. Accordingly, all conditions
of Theorem 2 are satisfied, and hence, equation (E2) is oscillatory
for ν < min {α, α2 − 1}.

Theorem 6. Suppose that the function H ∈ H̃(D) satisfies the
condtion:

(C5) lim sup
t→∞

1
H (t, t0)

t∫
t0

q (s) H (t, s)
(
τ (s)

s

)α
ds < ∞.

If there exists constant λ ∈ (0, 1) and function ϕ ∈ C([t0,∞)) such
that hold conditions (C4) and

(C6) lim inf
t→∞

1
H (t,T )

·

·

t∫
T

[
q (s)

(
τ (s)

s

)α
H (t, s) −

p (s) hα+1 (t, s)
λ (α + 1)α+1 Hα (t, s)

]
ds > ϕ (T )

for all T > t0, then equation (RHL) is oscillatory.

Proof. Suppose, on the contrary, that the equation (RHL) has an
nonoscillation solution u(t). Without loss of generality, we assume
that u(t) > 0 for t > T0. As in the proof of Theorem 1, holds (4)
and (5) for all t > T > T0. If we repeat the procedure as in the
proof of Theorem 4, using the condition (C6), we obtain (6). Then
from the condition (C5) we have:

lim sup
t→∞

[G (t) − F (t)] 6
w (T0)
λ
− lim inf

t→∞

1
H (t,T0)

·

t∫
T0

q (s)
(
τ (s)

s

)α
H (t, s) ds 6

w (T0)
λ
− ϕ (T0) < ∞

By (C6) we obtain

ϕ (T0) 6 lim inf
t→∞

1
H (t,T0)

t∫
T0

q (s)
(
τ (s)

s

)α
H (t, s) ds−
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− lim inf
t→∞

1
H (t,T0)

t∫
T0

p (s) hα+1 (t, s)
λ (α + 1)α+1 Hα (t, s)

ds,

and by (C5) we have:

lim inf
t→∞

1
H (t,T0)

t∫
T0

p (s) hα+1 (t, s)
λ (α + 1)α+1 Hα (t, s)

ds < ∞

If we form a number sequence {σn}
∞
n=1 in (T0,∞) that satisfies the

conditions:
lim
n→∞

σn = ∞

and

lim
n→∞

[G (σn) − F (σn)] = lim sup
t→∞

[G (t) − F (t)] < ∞

and apply the procedure as in the proof of Theorem 4, we can
conclude that (9) holds, which with (6) again gives a contradiction
to the condition (C4).

If, apart from the parametric function H(t, s) introduced as to
weight function continuous differential function ρ : [t0,∞]→ R, it
can be shown the following oscillation criteria for equation (RHL):

Theorem 7. If exist constant λ ∈ (0, 1), positive, nondecreasing
function ρ ∈ C1([t0,∞)) and functionH ∈ H+(D), such that

(C7) lim sup
t→∞

1
H (t, t0)

·

·

t∫
t0

[
q (s)

(
τ (s)

s

)α
H (t, s) −

p (s) ρ (s) Gα+1 (t, s)
λ (α + 1)α+1 Hα (t, s)

]
ds = ∞

where is
G (t, s) = h (t, s) +

ρ′ (s)
ρ (s)

H (t, s)

then equation (RHL) is oscillatory.

Proof. Let u(t) be a nonoscillatory solution of equation (RHL).
Without loss of generality, we assume that u(t) > 0 for t > t′. Then,
according to Lemma 1.1. (Bojičić, 2015) u′(t) > 0 and u′′(t) < 0
for all t > t0. Now, we define function

W (t) := ρ (t)
p (t) (u′ (t))α

uα (t)
f or t > t0

Then, for every t > t0

W ′ (t) = ρ′ (t)
p (t) (u′ (t))α

uα (t)
+ ρ (t)

[
p (t) (u′ (t))α

]′
uα (t)

−

−ρ (t)αp (t)
(

u′ (t)
u (t)

)α+1

.

Therefore, according to Lemma 1.2. from (Bojičić, 2015), we ob-
tain

W ′ (s) 6 W (s)
ρ′ (s)
ρ (s)

−ρ (s) q (s) λ
(
τ (s)

s

)α
−α

W
α+1
α (s)

(ρ (s) p (s))
1
α

(17)

za for all t > t0 = t0(λ).

If we multiply (17) by H(t, s) for t > s > t0, integrate from
t0 to t, we get

t∫
t0

W ′ (s) H (t, s) ds 6

t∫
t0

W (s)
ρ′ (s)
ρ (s)

H (t, s) ds − λ

t∫
t0

ρ (s) q (s)
(
τ (s)

s

)α
H (t, s) ds−

−

t∫
t0

α
W

α+1
α (s)

(ρ (s) p (s))
1
α

H (t, s) ds,

i.e.

−W (t0) H (t, t0) −

t∫
t0

W (s)
∂H (t, s)
∂s

ds 6

t∫
t0

ρ′ (s)
ρ (s)

W (s) H (t, s) ds − λ

t∫
t0

ρ (s) q (s)
(
τ (s)

s

)α
H (t, s) ds−

−

t∫
t0

α
W

α+1
α (s)

(ρ (s) p (s))
1
α

H (t, s) ds.

From this we conclude:

λ

t∫
t0

ρ (s) q (s)
(
τ (s)

s

)α
H (t, s) ds 6 (18)

W (t0) H (t, t0) +

t∫
t0

W (s) G (t, s) ds−α

t∫
t0

W
α+1
α (s)

(ρ (s) p (s))
1
α

H (t, s) ds.

If, again, we use inequality Hardly, Littewood & Polya and put:

X = (αH (t, s))
α
α+1

W (s)

(ρ (s) p (s))
1
α+1

,

Y =

(
α

α + 1

)α (
p (s) ρ (s)

(αH (t, s))α

) α
α+1

Gα (t, s) ,

γ =
α + 1
α

we get that for all t > s > t0 holds

αH (t, s)
W

α+1
α (s)

(ρ (s) p (s))
1
α

+
1

(α + 1)α+1

p (s) ρ (s)
Hα (t, s)

Gα+1 (t, s)−

−W (s) G (t, s) > 0,

which implies

W (s) G (t, s) − αH (t, s)
W

α+1
α (s)

(ρ (s) p (s))
1
α

6

6
p (s) ρ (s)

(α + 1)α+1 Hα (t, s)
Gα+1 (t, s) .

Now, from (18) we get

λ

t∫
t0

ρ (s) q (s)
(
τ (s)

s

)α
H (t, s) ds 6 W (t0) H (t, t0) +

MATHEMATICS, COMPUTER SCIENCE AND MECHANICS
48



+

t∫
t0

p (s) ρ (s)
(α + 1)α+1 Hα (t, s)

Gα+1 (t, s) ds,

so it is

lim sup
t→∞

1
H (t, t0)

·

·

t∫
t0

[
ρ (s) q (s)

(
τ (s)

s

)α
H (t, s) −

p (s) ρ (s)
(α + 1)α+1 Hα (t, s)

Gα+1 (t, s)
]

ds

6
W (t0)
λ

which contradicts (C7).

Corollary 8. If exist constant λ ∈ (0, 1), positive, nondecreasing
function ρ ∈ C1([t0,∞)) and functionH ∈ H+(D), such that

(C8) lim sup
t→∞

1
H (t, t0)

t∫
t0

p (s) ρ (s)
Hα (t, s)

Gα+1 (t, s) ds < ∞

and

(C9) lim sup
t→∞

1
H (t, t0)

t∫
t0

ρ (s) q (s)
(
τ (s)

s

)α
H (t, s) ds = ∞

then equation (RHL) is oscillatory.

The purpose of introducing weighting function ρ ∈

C1([t0,∞)) is justified by the following example:

Example 9. Consider the differential equation

(E3)
[
tν

∣∣∣u′ (t)∣∣∣α−1
u′ (t)

]′
+

1
t2

∣∣∣∣∣u ( t
3

)∣∣∣∣∣α−1
u
( t
3

)
= 0

where is ν i α constants such that 0 6 ν < α , 2 . If we take that
functions H (t, s) = (t − s)2 and ρ (t) = t3, we can prove that the
conditions (C8) i (C9) hold. Indeed:

(C8)
1
t2

t∫
t0

p (s) ρ (s)
Hα (t, s)

Gα+1 (t, s) ds =

=
1
t2

t∫
t0

sν+3

(t − s)2α

[
2 (t − s) +

3
s

(t − s)2
]α+1

ds =

=
1
t2

t∫
t0

sν+3 (t − s)1−α 2α+1

sα+1 [s + 3 (t − s)]α+1 ds 6

6
2α+1

t2 (t + 3 (t − t0))α+1 (t − t0)1−α tν+2−α+1 − tν+2−α+1
0

ν + 2 − α + 1
6

6 2α+14α+1tα+1+1−α−2 tν−α+3

ν − α + 3
=

=
8α+1

ν − α + 3
tν−α+3 −→

t→∞
0,

when is ν − α + 3 < 0, i.e. where ν < α − 3 and

(C9)
1
t2

t∫
t0

q (s)
(
τ (s)

s

)α
ρ (s) H (t, s) ds =

1
t2

t∫
t0

s
3α

(t − s)2 ds ≥

≥
t0

3α+1t2 (t − t0)3 =
t0t3

3α+1

(
1 −

t0
t

)3
−→
t→∞
∞.

Hence, according to Corollary 5, equation (E3) is oscillatory.

Using a Riccati’s technique and starting from the generality
of Riccati’s differential inequality (17), i.e. the corresponding in-
tegral inequality (18), procedure as in the proof of Theorem 4, i.e.
Theorem 6, can be prove the following two oscillation criteria for
equation (RHL):

Theorem 10. Suppose that from H ∈ H̃(D) hold

lim sup
t→∞

1
H (t, t0)

t∫
t0

p (s) ρ (s)
Hα (t, s)

Gα+1 (t, s) ds < ∞.

If there is function ϕ ∈ C ([t0,∞) which satisfies the condition (C4)
and for some constant λ ∈ (0, 1) condition

lim sup
t→∞

1
H (t,T )

·

t∫
T

[
ρ (s) q (s)

(
τ (s)

s

)α
H (t, s) −

p (s) ρ (s)
λ (α + 1)α+1 Hα (t, s)

Gα+1 (t, s)
]

ds

> ϕ (T )

holds for all T > t0, then equation (RHL) is oscillatory.

Theorem 11. Suppose that for fuction H ∈ H̃(D) holds

lim sup
t→∞

1
H (t, t0)

t∫
t0

ρ (s) q (s)
(
τ (s)

s

)α
H (t, s) ds < ∞.

If there is function ϕ ∈ C ([t0,∞) which satisfies the condition (C4)
and for some constant λ ∈ (0, 1) condition

lim sup
t→∞

1
H (t,T )

·

t∫
T

[
ρ (s) q (s)

(
τ (s)

s

)α
H (t, s) −

p (s) ρ (s)
λ (α + 1)α+1 Hα (t, s)

Gα+1 (t, s)
]

ds

> ϕ (T )

for all T > t0, then equation (RHL) is oscillatory.

Consider the differential equation
(RHL′)[

p (t)
∣∣∣u′ (θ (t))

∣∣∣α−1
u′ (θ (t))

]′
+ q (t) |u (τ (t))|α−1 u (τ (t)) = 0

where is functions p, q, τ satisfies conditions (a)− (d) and function
θ satisfy conditions
(e)
θ ∈ C1 ([t0,∞); [0,∞)) , lim

t→∞
θ (t) = ∞, θ′ (t) > 0 for all t > t0
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and
θ (t) > t, t > t0.

Using Lemma 1.1. from (Bojičić, 2015), if u(t) > 0, t > t0
is nonoscillatory solution of equation (RHL′) such that u(τ(t)) i
u(θ(t)) > 0, t > t0, then is u′(t) > 0, u′(θ(t)) > 0, u′′(t) < 0 i
u′′(θ(t)) < 0 for t > t0. For the function w(t) defined by

w (t) =
p (t) (u′ (θ (t)))α

uα (t)
, t > T0

using by Lemma 1.2. from (Bojičić, 2015) we obtain

w′ (t) = −q (t)
uα (τ (t))

uα (t)
− αp (t)

(u′ (θ (t)))α u′ (t)
uα+1 (t)

6 −λq (t)
(
τ (t)

t

)α
− αp (t)

(
u′ (θ (t))

u (t)

)α+1

, t > T0 = T0 (λ) > t0.

Hence, for equation (RHL′) is valid Riccatie’s inequality

w′ (t) 6 −λq (t)
(
τ (t)

t

)α
− α

w
α+1
α (t)

p
1
α (t)

, t > T0,

which has the same shape as (2). We conclude that for equation
(RHL′), all the above proven results will be valid.
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