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ABSTRACT 

Covid-19 causes one of the most alarming global health and economic crises in modern times. Countries around 

the world establish different preventing measures to stop or control Covid-19 spread. The goal of this paper is to 

present methods for the evaluation of indoor air quality in public transport to assess the risk of contracting Covid-

19. The first part of the paper involves investigating the relationship between Covid-19 and various factors 

affecting indoor air quality. The focus of this paper relies on exploring existing methods to estimate the number of 

occupants in public transport. It is known that increased occupancy rate increases the possibility of contamination 

as well as indoor carbon dioxide concentration. Wireless data collection schemes will be defined that can collect 

data from public transportation. Collected data are envisioned to be stored in the cloud for data analytics. We will 

present novel methods to analyze the collected data by considering the historical data and estimate the virus 

contagion risk level for each public transportation vehicle in service. The methodology is expected to be applicable 

for other airborne diseases as well. Real-time risk levels of public transportation vehicles will be available through 

a mobile application so that people can choose their mode of transportation accordingly.  

Keywords: Airborne diseases, Covid-19, Sensor data, Transportation systems, Wireless communications. 

INTRODUCTION 

Covid-19, also known as coronavirus disease 2019, is a 

contagious respiratory illness caused by the transmission of 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 

among human beings (Gorbalenya et al., 2020). The first 

identified case of coronavirus infection has been noticed in 

December 2019. In a period of less than a year, more than 45 

million cases and 1.2 million deaths caused by Covid-19 

worldwide have been identified. 

Coronavirus spreads mainly through droplets and aerosols 

after an infected person is coughing, sneezing, singing, talking, 

or breathing. The spreading happens when those droplets come 

into the contact with mouth, nose, or eyes of other humans who 

are in close proximity with the coronavirus-infected human-

being. Moreover, the droplets can evaporate into aerosols, which 

can sustain in the air for many hours, enabling airborne way of 

transmission usually in crowded and poorly ventilated indoor 

environments, such as bars, restaurants, nightclubs, 

transportation stations, busses, etc. Strategies imposed by 

authorities for prevention against Covid-19 spread are social 

distancing, using protective masks, hands hygiene, avoiding 

contacting the mouth, eyes, and nose with hands, and ventilation 

and air filtration in public spaces in order to expel the 

undesirable aerosols. 

                                                             
  * Corresponding author: stefan.panic@pr.ac.rs 

There are important research evidences that suggest the 

transmission of Covid-19 through aerosol in indoor spaces. 

Important publications are related to i.) measurement of Covid-

19 in the air, including the distance beyond recommended for the 

droplet transmission (Van Doremalen et al., 2020; Santarpia et 

al., 2020; Fears et al., 2020), ii. ) some physically established 

models of emissions of Covid-19 aerosols and dynamics of those 

aerosols (Qian et al., 2018; Liu et al., 2017;  Riediker & Tsai; 

2020), iii.) evidence of airborne transmission for the SARS and 

MERS infections (Yu et al., 2004; Xiao et al. 2018), iv.) 

Epidemiological evidences of possible airborne transmission, 

though other routes cannot be excluded (Shen et al., 2020). The 

available research evidences support the use of protective 

measures against transmission of Covid-19 in indoor 

environments as an addition to other protective strategies already 

used in practice (for example protective masks, hands hygiene 

and etc.) (Morawska et al., 2020). 

Economic and social effects of the Covid-19 outbreak 

impact all economic sectors, cause financial crises, social 

inequality, and insecurity stops transportation systems or impacts 

adversely. Covid-19 presents a great challenge for transportation 

systems all over the world in order to sustain regular services to 

customers. There are several factors that can be applied in 

practice in order to reduce the probability of Covid-19 infection 

risk in public transportation (for example control of the number 

of occupants in buses or trains, number of occupants at stations, 

trip length time, the use of face masks and the application of 
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recommended hygiene standards and the ventilation of busses 

and trains) (Tirachini et al., 2020; Wielechowski et al., 2020). 

Moreover, considering the decreased proximity to other 

passengers in the public transportation, the ability to evaluate the 

indoor air quality in the public transit in a timely manner 

becomes extremely important to assess the risk of Covid-19 

contagion (Fattorini & Regol, 2020). Air quality can be defined 

by using several different measures including volatile organic 

compounds (VOCs), carbon monoxide (CO), particle matter 

(PM), other pollutants (carbon dioxide, methane, etc.), 

temperature, and humidity levels. 

On the other hand, wireless sensors networks and wireless 

communications are already playing an important role in the era 

of Covid-19 (Saaed et al., 2020; Kamal et al., 2020; Ndiaye et 

al., 2020). The wireless communication technologies can be used 

to enable monitoring of the virus spreading, to enable healthcare 

automation, and to allow virtual education and conferencing. The 

wireless communication systems are envisioned to help the 

sustainability of the global economy by assisting in different 

industry sectors. Moreover, in (Howerton et al., 2020) the 

LoRaWAN-based system of air quality sensors in the city has 

been proposed. The generated data are used for a comparative 

spatial model used for the determination of air quality before and 

during the COVID-19 outbreak. 

In the second part of this work, we will investigate 

measures to estimate the number of occupants in the public 

transport based on the device and device-free wireless-based 

methods. In the third part, a low-energy sensor node will be 

recommended. In the final part, the general architecture of the 

system will be provided. Wireless data collection schemes will 

be defined to collect data from public transportation and to be 

stored in a data cloud for further processing. 

To the best of the author’s knowledge, no paper addresses 

the ambient sensor data and wireless communications for 

evaluation of air-quality in transportation systems for Covid-19 

risk assessment.  

THEORETICAL PART 

The occupancy rate in public transport is an essential 

parameter that must be considered while assessing indoor  

Covid-19 spread risk. Despite the availability of modern 

ticketing systems that support ticket validation during boarding, 

typically, stops that passengers exit are not recorded (Kostakos et 

al., 2010). Therefore, actual occupancy rates are usually not 

available. To address the problem of occupancy estimating, 

various solutions are available in the literature. In this study, we 

focus on solutions for indoor occupancy estimation. Such 

solutions can be classified into two broad groups based on 

whether user involvement is required or not. Some solutions 

require carrying a particular device (e.g., RFID tags, smart 

devices) or installing a certain mobile application. Such solutions 

are regarded as device-based solutions. Some solutions require 

deploying sensors or cameras to monitor either passenger 

directly or their impact on the environment. Such solutions do 

not require passengers to carry any device and are classified as 

device-free solutions. 

Also, it would be of interest to observe one high profile 

measure from telecommunication theory, level crossing rate 

(LCR).  If RF signal level at the transmission is adequately set, 

which can be accomplished after series of measurements and 

tests, then LCR values obtained at the reception could identify 

number of passengers traveling within the bus during the time 

between two signal receptions. Namely, LCR defines the rate at 

which random process R crosses predetermined level r, which 

can be expressed mathematically as: 
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DEVICE-BASED SOLUTIONS 

Ahorrar (Jain & Madamopoulos, 2016) is an indoor 

localization and occupancy counting framework designated to 

improve energy efficiency in office buildings through controlling 

the heating/cooling, ventilation (HVAC), and lighting. Ahorrar 

exploits participatory sensing to obtain the real-time distribution 

of occupants. Given the fact that some occupants carry multiple 

smart devices, Ahorrar employs a probabilistic and information-

theoretical approach to classify ownership of devices. The 

classification procedure of devices considers device locations 

using wireless signal strengths, mobility states of the devices, 

and data traffic patterns. Data is collected with existing wireless 

access points. For offline occupants without smartphones, it is 

recommended to provide wearable hardware platforms at 

building entrances. Data processing is performed at central 

locations to avoid the burden on occupants’ devices. The goal of 

the proposed solution is to achieve an accuracy of 95% in terms 

of occupancy numbers. Despite some novelties such as 

ownership classification for occupants with multiple smart 

devices, we expect smart devices ownership at lower levels in 

our case. Also, public transportation has a different mobility 

pattern of occupants compared to office buildings. For instance, 

Ahorrar assumes that when the person walks away with a subset 

of her devices, the rest of her devices will remain stationary 

(probably on her desk) until she returns. This is not a device 

mobility case that we expect in public transport. Also, 

assumptions such as distributing smart wearables at the entrance 

is not a viable option in our case. 

An occupancy counting system is proposed by iAbacus 

(Nitti et al., 2020) specifically for public bus transportation. The 
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main idea of the system is based on the identification of 

individual devices using the MAC address of the Wi-Fi network 

interface. Recent versions of popular mobile operating systems 

employ software-based randomization techniques to generate 

MAC addresses to improve user privacy and use the periodically 

changed random MAC addresses in successive messages. 

iAbacus system requires the installation of a Wi-Fi packet sniffer 

to collect probe request frames broadcasted by nearby mobile 

devices. iAbacus checks the first 6 octets of the obtained MAC 

addresses and evaluates whether the obtained address is a valid 

Organizationally Unique Identifier (OUI) assigned by IEEE. If 

the MAC address is not listed as an OUI, it is considered as a 

random MAC address and the proposed de-randomization 

algorithm is applied before the counting process. The counting 

algorithm is executed on the cloud and assesses whether a device 

is on the bus or nearby out of the bus. The data is transferred to 

the bus using a cellular connection during mobility or through 

Wi-Fi connections at bus stops. Experiments are conducted 

regarding static and dynamic conditions. For the case of the 

static condition, experiments are executed in a university room 

for 15 minutes. To test dynamic conditions, mobility of the bus is 

simulated by switching on/off devices according to an existing 

bus route and its stops. The experiments involve 8 devices where 

3 of them employ random MAC addresses. The system achieves 

100% accuracy with static conditions and 94% accuracy for 

dynamic cases. iAbacus assumes computed device count reflects 

the actual number of occupants which is not true considering 

offline passengers without a smartphone or when the Wi-Fi is 

disabled. Also, occupants with multiple smart devices can be 

counted multiple times. Despite contributions such as de-

randomization and the counting algorithm, the proposed system 

is evaluated in a small-scale simulation and obtained results can 

be misleading for a real deployment.  

Another solution that employs Wi-Fi probe requests is 

presented in (Tang et al., 2018). The goal of this approach is to 

estimate indoor crowd density. The solution consists of a 

positioning algorithm based on RSSI (received signal strength 

indicator) based fingerprints. The fingerprinting mechanism is 

claimed to be dynamic to minimize the inaccuracy of RSSI 

measurements. Considering the fact that a person may have 

multiple smart devices, a multiple linear regression model is 

applied to compute the likelihood of a person generating the Wi-

Fi signal. The system is composed of a sniffer connected to a 

cloud server. Besides the MAC address, RSSI measurements are 

also collected in probe request messages. Since RSSI typically 

fluctuates even for the same device, 3 highest probability RSSI 

values are used to signify a device. Cloud server is responsible 

for fingerprints management positioning algorithm, crowd 

density estimation, and signal probability analysis to identify a 

person with multiple smart devices. One of the major drawbacks 

of the proposed solution is the requirement of equipping smart 

devices located at fixed positions. In the experiments, 1 fixed 

smartphone is employed per 10 square meters. Furthermore, 

when multiple fixed smart devices are used, they are required to 

be evenly distributed across the test area, “most of the fixed 

devices” are supposed to be non-blocked by objects and each 

fixed device is expected ted to be deployed to a certain location. 

MAC randomization is not considered in this work. 

Another wireless connectivity-based occupancy estimation 

solution is presented by (Kostakos et al., 2010). The main goal of 

the proposed solution is to identify trip durations per passenger. 

The proposed approach exploits Bluetooth discovery requests to 

obtain unique Bluetooth identifiers of the onboard passengers. 

This approach requires the availability of Bluetooth adapters. 

Despite the prevalence of Bluetooth enabled smart devices, the 

proposed solution requires Bluetooth adapters set on for device 

detection. The system is implemented and tested on actual routes 

with busses equipped with GPS. Obtained Bluetooth data is 

correlated with the localization data considering the bus stop 

locations on the route. Device discovery time is used to identify 

the bus stop where the passenger boards. Likewise, the time 

when the devices disappear implies the bus stop where the 

passenger exits. The duration of the trip is also used to identify 

false device detections such as other passengers waiting at the 

bus stops. This approach assumes that Bluetooth is not switched 

off/on during the trip. Another drawback of this approach is the 

over counting of passengers with multiple Bluetooth devices. 

Accuracy in counting people is crucial for the evacuation of 

building occupants in case of an emergency. SmartEvacTrak 

(Ahmed et al., 2015) is such a solution that provides occupancy 

counting and localization. The proposed system is composed of a 

mobile application for data collection and a server for data 

analysis. SmartEvacTrak assumes not only smartphones but also 

the availability of certain sensors onboard along with the mobile 

applications installed on the phones. The proposed approach also 

requires the deployment of permanent magnets at gates to detect 

entries and exits using magnetometers and inertial sensors on 

occupants’ phones. Localization is enabled using RSSI 

measurements obtained from occupants’ WiFi adapters. 

SmartEvacTrak reaches 98% counting accuracy and 97% 

localization accuracy. Certain parameters such as floor plans, 

access point locations, the thickness of the obstacles, etc. must be 

present in the configuration repository. Strict hardware and 

software requirements on the occupants’ side, certain deployment 

requirements on the building infrastructure, and the requirement 

of the configuration repository complicate the applicability of the 

proposed solution. 

(Li et al., 2016) proposes an indoor crowd monitoring 

system based on RSSI measurements. The main idea of the 

proposed system is deploying a wireless sensor network and 

collecting WiFi RSSI through sensor nodes. Collective data 

provided by the nodes indicate the location of the devices where 

the probe requests are issued. The presented approach considers 

maximum RSSI when two or more nodes receive probe requests 
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from the same device. (Li et al., 2016) considers mobility of the 

occupants and handles cases when an occupant leaves and 

returns to the coverage of a node. The system is tested at a lab 

and classrooms in a university. The time interval between probe 

requests is varied in the experiments to assess the impact on the 

performance of the system. 

Wi-Counter (Li et al., 2015) is an indoor occupancy 

counting system employing RSS of the WiFi signals. The system 

consists of a mobile application to crowdsource RSS data from 

different locations and a server to train the collected data. The 

training phase is offline and performed after the crowdsourcing 

phase. The training phase filters noise and then applies a neural 

network solution to model the relationship between RSS and the 

occupancy count. The system is tested in classrooms at a 

university. 7 access points are used in a classroom of size 96-

meter square. During the online counting phase, the mean and 

standard deviation of the obtained RSS is provided to the neural 

network model to estimate the people count in the classroom. 

The system reaches up to 93% accuracy even with random 

mobility.    

DEVICE-FREE SOLUTIONS 

Camera-based Solutions 

Several different methods exist in the literature for counting 

people in indoor and outdoor applications. In recent years, 

camera systems are used for detection and counting people with 

the development of image processing techniques. 

The use of cameras for people counting systems has some 

disadvantages. The application of this method indoors or 

outdoors determines the quality of the counting process. It is 

possible to get more successful results than the outdoor 

environment due to the possibility of controlling the light 

intensity in the indoor environment. However, the outdoor 

environment makes counting difficult due to uncontrolled 

environments such as background, natural light changes, and 

climate factors. 

Another problem is the perception of people with the 

camera is the number of individuals at the scene. As the number 

of individuals increases, it makes the counting process difficult 

due to collective action and individuals closing the camera view 

(Reis, 2014). Also, the image processing technique for counting 

people requires expensive hardware for camera and processing 

and hardware cannot provide its energy from the rechargeable 

battery. 

According to (Aziz et al., 2011) and (Chan et al., 2008), 

people detection and counting using image processing techniques 

can be divided into 3 main groups: Trajectory clustering 

approach, Feature-based regression approach, Individual 

pedestrian detection. 

An algorithm has been developed with a maximum 10% 

average error for detection and classification of moving objects 

in different outdoor environments with image processing (Sacchi 

et al., 2001). RBG camera and depth sensor can be used together 

in counting people which cross a virtual line (Del Pizzo et al., 

2016). Vision-based method for counting people can be divided 

into two groups, namely neural-based crowd estimation and blob 

detection and blob tracking (Schlögl et al., 2001). The first 

method uses a trained neural network. The accuracy of this 

system depends on the data set used to train the neural network. 

There are some research papers that use Neural-Based Crowd 

Estimation (Regazzoni & Tesei, 1996, Cho et al., 1999, Chow et 

al., 1999).  Blob detection and tracing are based on separating an 

object from the background (Kettnaker & Zabih, 1999, 

Haritaoglu et al., 2000).  blob detection has poor accuracy when 

there are crowded people on the stage. 

Sensor-based Solutions 

(Jin et al., 2015) presents an indoor occupancy detection 

solution based on the ambient CO2 level. The proposed system 

assumes humans as the main source of CO2 production in the 

environment. Depending on the application area, this assumption 

can be misleading. Another factor that needs to be considered is 

the time needed for CO2 accumulation in the area indicating the 

actual concentration level. The configuration of the room where 

the system will be used should also be studied. Depending on the 

air ventilation, the rate of the fresh incoming air can vary. Sensor 

locations and the locations of air supply and exit vents are also 

critical on the obtained results. The approach proposed by (Jin, 

2015) follows sensing by proxy methodology using partial 

differential equations. 

Another device-free occupancy detection solution is 

presented in (Pan et al., 2016). The main goal of (Pan et al., 

2016) is to detect occupancy estimation even for multiple 

monitored people using vibration sensors. The system can detect 

the traffic of up to 4 people. The proposed system monitors 

ambient structural vibration. However, the applicability of the 

proposed system can be low for mobile systems such as vehicles 

due to various levels of vibration during mobility. Although the 

system is proposed for indoor environments, the maximum 

number of people that can be detected by (Pan et al., 2016) can 

be limiting for most of the indoor applications. 

(Shih & Rowe, 2015) employs ultrasonic chirps for indoor 

occupancy estimation. The main idea of the proposed solution is 

to transmit an ultrasonic chirp and analyzing how the signal 

dissipates over time. The human body absorbs sound and 

increased occupancy is expected to reduce the amplitude of 

signal reflections. This approach requires a training phase to 

understand the characteristics of the room with a known number 

of occupants. For training, machine learning methods are 

employed.  To adapt to slight changes in the room, the model 

must be retrained. The signal is transmitted in the ultrasonic 

frequency range for silent sensing. The proposed system is 

motivated by applications such as concert halls and the 

maximum number of people that can be detected is reported as 
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50. Despite its advantages, the system is not designated for 

mobile environments. Therefore, its performance in public 

transportation can be lower due to the varying mobility of the 

platform. 

Doorjamb (Hnat et al., 2012) is an indoor room-level 

tracking system to detect passing people. The proposed system 

employs ultrasonic range sensors located above the doors to 

identify crossing people. This solution can identify the walking 

direction and by following the sequence of the crossed doors, 

room-level tracking becomes possible. To identify individuals, 

the system checks the heights of the people and their movement 

sequences between adjacent rooms. To detect boarding and 

exiting people in public transport, a similar solution can be 

adopted. Adjacent rooms may or may not be possible in the 

public transport depending on the vehicle type and model. 

RF-based Solutions 

Device-free radio frequency (RF) based occupancy 

counting methods are useful since they do not impose passengers 

to use their devices. Device-free RF methods can be classified 

into different groups depending on the type and utilization of the 

RF signal they use for the measurements and evaluation of the 

number of occupants: i.) RSSI, ii.) channel state information 

(CSI) and iii.) ultra-wideband (UWB) signals (Kouyoumdjieva et 

al., 2019). 

RSSI-based solutions evaluate the signal power strength 

level at the receiver that originates from a radio transmitter (for 

example such as an access point (AP) from WiFi infrastructure). 

In ideal propagation conditions when the line-of-sight (LOS) 

transmission is achieved and multipath fading and shadowing 

effects are negligible, RSSI is expected to be constant with time. 

Otherwise, the signal strength varies over time. One of the causes 

is the presence of people that can block or effect RF transmission 

between receiver and transmitter. Accordingly, the number of 

people in an environment can be determined based on measured 

RSSI values at the receiver node. In ideal circumstances, the 

RSSI value would result only from the signal strength received 

through LOS transmission. Although, in an indoor environment, 

multipath propagation is expected to impact the RSSI value 

highly. Thus, the measurements usually have to be reevaluated in 

order to remove other factors. In (Nakatsuka et al., 2008), the 

RSSI-based method for determination of the number of 

occupants is first introduced in 2008. It has been shown that the 

RSSI level decreases with an increasing number of occupants. 

The proposed model is capable to register up to 30 occupants. In 

(Xu et al., 2012), the fingerprinting-based method applies a 

probabilistic model for the occupant’s localization. In the first 

phase, the RSSI level is measured with no occupants and then 

one occupant enters the room. This one person enters a different 

location in turn, stands in the middle of a different location, and 

then moves randomly. 

The data are collected and sent to a centralized unit for 

further processing. The variation of RSSI values between these 

two phases, also known as RSSI footprint, is stored for a 

different location and channel links, and a classifier is developed 

based on RSSI values. This method is capable of mitigating 

errors caused by multipath in indoor environments but also helps 

to improve localization precision. 

CSI-based people counting methods are similar to RSSI-

based methods. Moreover, CSI provides additional information 

on channel properties of wireless links derived from the physical 

layer of the system. It describes signal transmission between 

transmitter and receiver and addresses the impact of multipath, 

shadowing, and power decay with distance. Furthermore, the CSI 

is capable to account for the environmental variances caused by 

moving objects more accurately than RSSI-based methods. 

Similar to RSSI, CSI-based methods also rely on WLAN 

infrastructure that is usually available in indoor environments. 

CSI-based people counting methods are more applicable in 

environments with high mobility. It is important to notice that 

counting immobile occupants in the environment can be more 

difficult if they move since fewer variations in CSI values are 

expected. However, available results from literature show that 

CSI may be a more appropriate choice than RSSI for application 

in people counting systems in indoor environments 

(Kouyoumdjieva et al., 2019). 

In the ultra-wide band (UWB) based technique, the UWB 

signal is transmitted, the signal is then reflected by targets, and 

received to detect occupants within the radar range (Niu-

Varshney, 2006). It is known that the received UWB signals can 

be reflected by every object in a particular environment. Thus, 

undesirable signals are needed to be detected and removed. The 

number of occupants can be determined by detecting the signal’s 

waveform of each individual occupant or determining the 

number of occupants based on the pattern of the waveform of the 

received signals (Choi et al., 2017). 

Infection Risk in Public Transportation 

The constant use of mass land transport increases the risk of 

transmission of the virus, as countless people are placed close 

together. The causes of transmission of the virus are based on 

high passenger density, overcrowding in a confined space, 

insufficient ventilation, recirculation of polluted air, and 

increased exposure time to infected individuals (Tatem et al., 

2006, Nasir et al., 2016). 

(Pestre et al., 2012) showed that, flu can spread rapidly in a 

closed area where there is not enough air renewal. In their study, 

(Baker et al., 2010) showed that, flu transmission can occur 

during modern commercial air travel. As a result of the study, the 

risk is concentrated among people sitting between two rows of 

infected passengers with symptoms that are consistent with 

transmission of other respiratory infections during the flight.   
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SYSTEM ARCHITECTURE 

We regard the proposed solution as Covid-19 Risk 

Assessment System with Occupancy Estimation (CORAS-OE). 

CORAS-OE system architecture is composed of three main 

components, namely CORAS-OE-node, CORAS-OE -cloud, and 

CORAS-OE-mobile. CORAS-OE-node is the sensor node unit 

deployed onboard the public transport system to be monitored. 

CORAS-OE-node is equipped with an integrated sensor 

combining multiple sensors to track events and monitor 

environmental conditions. Some of the sensors employed on x-

node are CO2, Volatile Organic Compounds (VOCs), 

temperature, humidity, and light sensors. We are concerned with 

the mobility of the vehicle to detect stops. CORAS-OE-node 

exploits WiFi probe requests to detect passengers with smart 

devices. Unless their WiFi network adapter is disabled, 

passengers on board the vehicle can be detected. The system is 

desired to distinguish people outside the bus and avoid over 

counting people with multiple smart devices. CORAS-OE-node 

is also equipped with a microcontroller for local computing and 

an SD card for local storage of the collected data. 

CORAS-OE-node preprocesses the local data and sends it 

to x-cloud periodically. To minimize the amount of data that 

needs to be sent to the cloud, CORAS-OE-node applies various 

techniques including filtering and data compression. CORAS-

OE-node can evaluate assess the risk level of Covid-19 spread 

locally based on the normalized values obtained from x-cloud 

daily. However, certain data is sent to CORAS-OE-cloud for 

analysis and also to update the current risk level. Data transfer 

frequency is dynamically set. In the worst case, it is updated at 

every stop. However, there will be no update unless the risk level 

changes above the given threshold which is also set dynamically 

at the beginning of the daily service by CORAS-OE-cloud. 

 

Figure 1. Proposed system architecture. 

CORAS-OE-cloud is the cloud component of the system. 

X-cloud collects data from x-nodes across the city. Data is stored 

as a time series. Historical data plays an important role in 

determining the normalized values that can vary based on 

seasonal changes. Other than the batch analysis, the main task of 

CORAS-OE-cloud is to feed CORAS-OE-mobile. CORAS-OE-

mobile is the mobile application that people can use to monitor 

risk levels on different routes and vehicles. CORAS-OE-mobile 

is not a crowd-sourcing application to collect data but only the 

front end of the system to share the results with passengers. The 

sample illustration of the proposed architecture can be found in 

Figure 1. 

CONCLUSION 

The paper proposes an efficient method for assessment of 

air quality in the public transport system to examine the risk of 

contracting Covid-19. The introduction of the paper provides 

data examining the relationship between Covid-19 and various 

factors affecting indoor air quality. The theoretical part of this 

work introduces techniques to estimate the number of occupants 

in the public transport based on the camera, device, and device-

free wireless-based methods. The system's overall architecture 

consisting of sensor node units, wireless data collection schemes, 

and cloud storage systems is proposed for the evaluation of air-

quality in transportation systems for Covid-19 risk assessment. 
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