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ABSTRACT 

Numerically investigated the light beam propagation through one-dimensional photonic lattice possessing one 

linear defect. It is shown how capturing of light depends on lattice characteristics as well as the width and 

wavelength of input light beam. Results may be useful for all-optical control of transmission of waves in 

interferometry. 
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INTRODUCTION 

Wave propagation in periodic optical lattices has been 

intensively studied in the last years. Photonic lattices (PL) are 

periodic structures that are widely used for light manipulation in 

photonic devices (Song et al., 2003). Their periodic structures 

enable the study as discrete diffraction (Eisenberg et al., 2000) 

the existence of Bloch oscillations (Peschel et al., 1998) discrete 

and gap solitons (Christodoulides et al., 2003; Neshev et al., 

2007; Garanovich et al., 2012). Localized modes can be formed 

inside the lattice and are influenced by the very geometry of 

photonic systems, such as modulated lattices (Cao et al., 2012) 

and flat-band lattices (Vicencio et al., 2015; Beličev et al., 2015). 

The periodicity enables formation of zonal structure. The zonal 

structure consists of permitted and forbidden zones which can 

allow or stop light beam propagation. The zonal structure can be 

changed by introducing defect into the lattice (Yablonovitch, 

1993; Meade et al., 1993). Control of light propagation in one-

dimensional (1D) photonic crystals is possible by changes 

system parameters, such as refractive index, lattice period and 

the width of defect (Suntsov et al., 2006; Matias et al., 2003; 

Kuzmanović, 2016; Stojanović Krasić et al., 2017). The defects 

disrupt translational symmetry and enables the formation of 

localized defect modes (Gupta et al., 1997, Tsai et al., 1998). 

Defects in PL may stop light (Goodman et al., 2002), trap or 

deflect the incident beam (Molina et al., 2006). Can be used for 

all-optical switching and routing (Wang et al.; 2009, Ye et al., 

2008). Defects be formed by changing the value of refractive 

index in certain WG or by changing the width of the WG or the 

distance between WGs (Meier et al., 2005, Morandotti et al., 

2003). Lattice defects increase the complexity of the zonal 

structure by creating defect levels within the gaps (Beličev et al., 

2010; Fedele et al., 2005; Molina et al., 2008). 

The propagation of waves in periodic systems with linear 

and nonlinear defects were investigated (Mak et al., 2003; 
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Molina et al., 2006) and the scattering of linear and nonlinear 

waves in series with a PT-symmetric defect (Dimitriev et al., 

2011). Structural defect significantly influences the propagation 

of light beams in the vicinity of lattices compound and enables 

the existence of various localized components. 

In this work, we numerically analyze how light capturing is 

affected by lattice parameters and by light characteristics such as 

wavelength and full width at half maximum.  

THEORETICAL PART 

We analyze the linear one-dimensional PL which contains a 

linear defect (LD) embedded (Figure 1).  

 

Figure 1. Schematic representation of the system. red line shows 

the position of the linear defect. 

The light propagation through PL consisting of the linear 

waveguide array with embedded single linear waveguide. 

Mathematically, the model can be described with the paraxial 

time-independent Helmholtz equation (Kuzmanović et al., 2015): 
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where z is the propagation coordinate,  , zE x  is the component 

of the light electric field in the z-direction, 
0 2k    is the 

wave number, 0n  is the refractive index of the substrate, and   

is the wavelength of light. The lattice is prepared along the 

transverse x direction and there are 49 WGs in each lattice. 

Functional dependence of the refractive index on system 

parameters (Kuzmanović et al., 2016) given by in the form: 
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where k  is the position of the LD which is arbitrary placed in 

the lattice, m is the number of WGs in lattice n  is the lattice 

potential depth. Parameters 
gw  mark the width within lattice. 

The parameter 
gkw  represents the width of the LD, while 

parameters s represents the spacing between WGs in the lattices. 

Functions ( , , )gG w s x  represent Gaussians corresponding to the 

WGs of the lattice, whereas function ( , , )k gk gG w s x  corresponds 

to the LD. Lattice potential depth is 0.011.  

The explicit form of Gaussians is: 
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that models the waveguides refractive index profile 

(Kuzmanović et al., 2015). 

The position of the center of the nth component Gaussian is 

marked 𝑛𝑠, and it is shifted from the middle of the waveguide 

along the x axis. The respective width 
gw  represents the full 

width at half maximum. 

Introducing dimensionless variables 0k x   and 0 ,k z   

the equation (1) obtained the following dimensionless form: 
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The light propagation across the lattice is initiated by the 

Gaussian light beam with wavelength λ = 450 nm and λ = 550 

nm with the FWHM as a variable parameter. In the following, 

we use either Gaussian light beam with the FWHM = 1,5 μm, 2 

μm, 3,5 μm, 4 μm and 6 μm. The light propagation is simulated 

numerically by the split-step Fourier method (Fisher & Bischel 

1973).  

NUMERICAL RESULTS 

The aim of the numerical results is to compare how lattice 

parameters, as well as beam characteristics, affect light capturing 

at the  2 μm and 6 μm  wide defect. The width of the LD is either 

2 or 6 μm and further in the paper they will be marked as narrow 

and wide defect, respectively. The width of the WG within the 

lattice is variable parameter and we analyse 3.5gw  μm, 4 μm, 

4.5 μm and 5 μm and the distance between neighboring WGs is 

3.5gs  μm, 4 μm and 4.5  μm. LD is fixed in the middle of the 

lattice and its position does not change.  

In general, the trapping efficiency in a lattice with a 

coupling defect depends on the wavelength of used light (please 

see Fig. 3 below) and the coupling strength of the defect 

compared to the rest of the lattice. Keeping the size of the defect 

and the wavelength of used light constant, the coupling strength 

may be changed either by changing the parameters of the 

uniform lattice (please see Figs. 2a and 2b) or by varying the 

FWHM of the input beam (please see Fig. 2, 3).  

 

Figure 2. Amplitude profiles of the output light beams. Light 

(FWHM = 4 µm) is captured at the 6 µm wide LD in the lattice: 

a) The separation between waveguides is constant, while their 

width is the changeable parameter: 3.5 µm - green, 4 µm - blue 

and 4.5 µm – red colour. b) The width of the waveguides is 

constant and the separation between them is the varying 

parameter: 3.5 µm – blue, 4 µm – red, 4.5 µm – green colour. 

The potential of the lattice is schematically represented within 

the plots – blue curve in Figs. 2. a, b. 

Light capturing at the 6 µm wide LD within the lattice, 

where the distance between the waveguides is constant (
gs ) and 

where the width of the waveguides (
gw ) is the varying 

parameter, is shown in Fig. 2a. Because of the different periods 

of the lattices, caused by diverse widths of the waveguides (3 

µm, 4 µm, 4.5 µm), the positions of the LDs are shifted along the 

x – axis (see the positions of the green, blue and red curve). The 

potential of one of the lattices ( 4gw  μm) is schematically 

represented in Fig. 2, 3, for the better readability. One may see 

that the different widths of the waveguides influence the 

amplitudes of defect modes (green, blue and red curve). 

Light capturing at the 6 µm wide LD within the lattices 

where the width of the waveguides is constant and where the 

separation between the waveguides is the changeable parameter, 

is presented in Fig. 2b. It is obvious that different separations 
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between the waveguides influence the trapping efficiency of the 

observed defect modes (see blue, red and green curve in the Fig. 

2b). 

Capturing of light at the 6 µm wide LD for two different 

wavelengths is presented in Fig. 3. There is a slightly difference 

between the amplitudes’ heights when the wavelength of the 

used light is 450 nm or 550 nm (see red curve and red curve in 

Fig. 3). 

 

Figure 3. Amplitude profiles of the output light beams. Light 

(FWHM = 4 µm) is captured at the 6 µm wide LD in the lattice 

with 4gw  µm and 4gs  µm. The blue curve denotes a light 

beam with the wavelength of 450 nm, while the red one marks 

the light beam with the wavelength of 550 nm. The potential of 

the lattice is schematically represented within the plots – black 

curve in Fig. 3.  

In Fig. 4a and Fig. 4b it can be seen that the input of 4 µm 

gives the best capturing effect at the 6 µm wide LD (see red 

curve in Fig. 4a).  In Fig. 4b, it can be seen that at the 2 µm wide 

LD the narrower input beam (2 µm FWHM) enables slightly 

better capturing (see – green colour in Fig. 4b). 

 

Figure 4. Amplitude profiles of the output light beams. Light is 

launched in the lattice where 4gw  µm and 4gs  µm, at the: 

a) 6 µm wide LD. FWHM of the input beam is: 3.5 µm – blue, 4 

µm – red, 6 µm – green. b) 2 µm wide LD. FWHM of the input 

beam is: 1.5 µm – blue, 2 µm – green, 4 µm – red. The potential 

of the lattice is schematically represented within the plots – black 

curve in Fig. 4.  

CONCLUSION 

We have numerically explored how LDs of different widths 

affect light beam propagation through a PL system with a LD. 

The chosen set of system parameters, the narrower LD is more 

efficient in light entrapment. The difference of light capturing is 

analyzed through varying the system parameters, waveguide 

width and separation between waveguides, and also by changing 

the characteristics of the light beam such as FWHM and 

waveguide. 
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