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ABSTRACT

Infinitesimal bending of curves lying with a given precision on ruled surfaces in 3-dimensional Euclidean space is
studied. In particular, the bending of curves on the cylinder, the hyperbolic paraboloid and the helicoid are considered
and appropriate bending fields are found. Some examples are graphically presented.
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INTRODUCTION

Infinitesimal bending is a kind of deformations of geometric
objects under which the arc length is stationary with appropriate
precision which is described by the following equation

ds2
ε − ds2 = o(ε), ε > 0, ε → 0.

It means that the difference of the squares of the line elements of
deformed and initial object is an infinitesimal of the order higher
then the first with respect to the infinitesimal parameter ε. Many
other geometric magnitudes stay invariant in the sense that they
don’t get the variations of the first order (for example, the coeffi-
cients of the first fundamental form, Cristoffel’s symbols, Gaus-
sian curvature etc.). Many papers are devoted to the infinitesi-
mal bending of curves, surfaces and manifolds (see (Aleksandrov,
1936; Efimov, 1948; Kon-Fossen, 1959; Vekua, 1959; Ivanova-
Karatopraklieva & Sabitov, 1995; Velimirović, 2001a,b; Hinter-
leitner et al., 2008; Rančić et al., 2009; Alexandrov, 2010; Naj-
danović, 2015; Najdanović & Velimirović, 2017; Kauffman et al.,
2019; Najdanović et al., 2019; Rančić et al., 2019; Rýparová &
Mikeš, 2019; Belova et al., 2021; Maksimović et al., 2021).

In (Najdanović & Velimirović, 2018) the authors studied the
infinitesimal bending of curves that lie on ruled surfaces in Eu-
clidean 3-dimensional space. It was proven that it is possible in-
finitesimally bend such a curve so that all bent curves remain on
the same surface as the initial curve. Corresponding infinitesimal
bending field under whose effect all bent curves remain on the
same ruled surface was obtained.

The connection between ruled surfaces and infinitesimal
bending of curves is also considered in (Gözütok et al., 2020).
Some interesting papers on ruled surfaces are (Li & Pei, 2016; Li
et al., 2021).

In this paper we observe a curve on a ruled surface and set
the condition that all bent curves remain on the initial surface with
a given precision. More precisely, let

C : r = r(t) = (x(t), y(t), z(t)), t ∈ J ⊆ R,

be the curve on the surface S given by the implicit equation

S : F(x, y, z) = 0.

So, it is valid

F(x(t), y(t), z(t)) = 0.

Suppose that

Cε : rε(t) = (xε(t), yε(t), zε(t))

is an infinitesimal bending of the curve C and we get C for ε = 0.
The problem we pose is to determinate an infinitesimal bending
of C so that all bent curves Cε are on the surface S with a given
precision, ie. so that the following condition is valid:

F(xε(t), yε(t), zε(t)) = o(ε). (1)

Below we are going to consider infinitesimal bending of
curves on a cylinder, on a hyperbolic paraboloid and on a helicoid.
Some examples are graphically presented using program packet
Mathematica.

INFINITESIMAL BENDING OF CURVES

At the beginning we are giving basic definitions and theo-
rems regarding infinitesimal bending of curves according to (Efi-
mov, 1948; Vekua, 1959; Velimirović, 2001a).

Let a regular curve C be given in the vector form

C : r = r(t), t ∈ J ⊆ R (2)

included in the family of the curves

Cε : rε(t) = r(t) + εz(t), t ∈ J, (3)
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where ε > 0, ε → 0 is an infinitesimal parameter and we get C for
ε = 0 (C = C0).

Definition 1. A family of curves Cε given by (3) is called infinites-
imal deformation of the curve C given by (2). The field z = z(t) ,
z ∈ C1, is infinitesimal deformation field of C.

Definition 2. An infinitesimal deformation Cε given by (3) is
called infinitesimal bending of the curve C given by (2) if

ds2
ε − ds2 = o(ε),

where the field z = z(t) , z ∈ C1, is infinitesimal bending field of
C.

Theorem 3. (Efimov, 1948) Necessary and sufficient condition for
z(t) to be an infinitesimal bending field of the curve C is to be

dr · dz = 0, (4)

where · stands for the scalar product in R3. �

Definition 4. An infinitesimal bending field is trivial if it can be
given in the form

z = a × r + b,

where a and b are constant vectors.

According to Vekua (1959) we have the next theorem.

Theorem 5. Under infinitesimal bending of curves each line ele-
ment undertakes a nonnegative addition, which is the infinitesimal
value of at least the second order with respect to ε, i. e.

dsε − ds = o(ε) ≥ 0.

�

Infinitesimal bending field of a curve C is determined in the
following theorem.

Theorem 6. (Velimirović, 2001a) Infinitesimal bending field for
the curve C given by (2) is

z(t) =

∫
[p(t)n1(t) + q(t)n2(t)] dt, (5)

where p(t) and q(t) are arbitrary integrable functions and vectors
n1(t) and n2(t) are respectively unit principal normal and binor-
mal vector fields of the curve C. �

INFINITESIMAL BENDING OF CURVES ON CYLINDER

Let be given a cylinder by the implicit equation

S : F(x, y, z) ≡ x2 + y2 − a2 = 0, (6)

a > 0, or by the vector parametric equation

S : r(u, v) = (a cos u, a sin u, v), u ∈ [0, 2π], v ∈ [0, h]. (7)

Let

C : r(t) = r(u(t), v(t)) = (a cos u(t), a sin u(t), v(t)), t ∈ J, (8)

be the curve on the cylinder S . Suppose that

Cε : rε(t) = (a cos u(t) + εz1(t), a sin u(t) + εz2(t), v(t) + εz3(t)) (9)

is an infinitesimal bending of C, where z1(t), z2(t), z3(t) are real
continuous differentiable functions. In order to stay on the cylinder
S with a given precision, it is necessary to apply the condition (1),
so we have

(a cos u(t) + εz1(t))2 + (a sin u(t) + εz2(t))2 − a2 = o(ε).

From the last equation we obtain the condition

cos u(t)z1(t) + sin u(t)z2(t) = 0 (10)

which allows the bent curves to stay on the cylinder S with a given
precision. For cos u(t) , 0 we can express z1 as a function of z2:

z1(t) = − tan u(t)z2(t). (11)

Therefore, we are looking for the infinitesimal bending field in the
following form

z(t) = (− tan u(t)z2(t), z2(t), z3(t)). (12)

In order for the field (12) to be an infinitesimal bending field, it
is necessary that the condition ṙ · ż = 0 is valid. Since ṙ(t) =

(−a sin u(t) u̇(t), a cos u(t) u̇(t), v̇(t)) and ż(t) = (− u̇(t)
cos2 u(t) z2(t) −

tan u(t) ż2(t), ż2(t), ż3(t)), we obtain

a u̇(t)2 sin u(t)
cos2 u(t)

z2(t) +
a u̇(t)

cos u(t)
ż2(t) + v̇(t)ż3(t) = 0. (13)

This is the relationship between z2 and z3. Let us choose arbitrarily
z3 and solve the linear differential equation by z2. The solution is

z2(t) = e−
∫

u̇(t) tan u(t) dt
[
c −

1
a

∫
v̇(t) cos u(t)

u̇(t)
ż3(t)e

∫
u̇(t) tan u(t) dtdt

]
,

(14)
u(t) , const, cos u(t) , 0 and c is a constant. If v̇(t) = 0 ⇒ v(t) =

const, the curve C is a circle on the cylinder. In that case we choose
z3 arbitrarily and determine z2 from

z2(t) = ce−
∫

u̇(t) tan u(t) dt.

If u(t) = const, then the equation (13) reduces to v̇(t)ż3(t) =

0 wherefrom we have ż3(t) = 0 ⇒ z3(t) = const and we choose z2

arbitrarily.
Based on the previous considerations, the following theo-

rems hold.
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Theorem 7. The field z(t) = (z1(t), z2(t), z3(t)) whose components
z1 and z2 satisfy the condition (10) includes the curve (8) under
infinitesimal deformation into the family of deformed curves on
the cylinder (6) with a given precision. �

Theorem 8. The field z(t) given by (12) where z3(t) is arbitrary
real continuous differentiable function, and z2(t) is given in (14),
is infinitesimal bending field of the curve (8) so that all bent curves
are on the cylinder (6) with a given precision. �

Example 9. Let be u(t) = t, v(t) = 0. Then the curve C is a circle
r(t) = (a cos t, a sin t, 0). We have

z2(t) = ce−
∫

tan t dt = c̄ cos t,

z1(t) = −c tan t cos t = −c̄ sin t,

z3-arbitrarily, c, c̄ are constants. So, the infinitesimal bending field
is z(t) = (−c̄ sin t, c̄ cos t, z3(t)). By a simple check, we conclude
that the conditions ṙ · ż = 0 and (a cos t − εc̄ sin t)2 + (a sin t +

εc̄ cos t)2 − a2 = ε2c̄2 = o(ε) are satisfied. An illustration of the
infinitesimal bending is shown in Figures 1 and 2.

Figure 1. Circle (red) on the cylinder and infinitesimally bent
curves (blue), for c̄ = 1, z3(t) = t + 1 and ε = 0.05, 0.1, 0.25.

Figure 2. Circle (red) on the cylinder and infinitesimally bent
curves (blue), for c̄ = 1, z3(t) = cos t and ε = 0.05, 0.1, 0.25.

INFINITESIMAL BENDING OF CURVES ON HYPER-
BOLIC PARABOLOID

Let the curve C : r = r(t) lie on the hyperbolic paraboloid

S : F(x, y, z) ≡ xy − z = 0 (15)

with the vector parametric equation

S : r(u, v) = (u, v, uv).

Of course, the following equation holds

C : r = r(t) = r(u(t), v(t)) = (u(t), v(t), u(t)v(t)). (16)

Let z(t) = (z1(t), z2(t), z3(t)) be an infinitesimal bending field under
which all bent curves are on the surface (15) with a given preci-
sion. As the infinitesimal bending is in the following form

rε(t) = r(t) + εz(t) ≡ (xε(t), yε(t), zε(t)),

the condition (1) reduces to

(u(t) + εz1(t))(v(t) + εz2(t)) − u(t)v(t) − εz3(t) = o(ε)

ie.

z1(t)v(t) + z2(t)u(t) − z3(t) = 0. (17)

This is the necessary and sufficient condition which allows
that all bent curves are approximately on S . From Eq. (17) we
obtain

z3(t) = z1(t)v(t) + z2(t)u(t). (18)

Therefore,

z(t) = (z1(t), z2(t), z1(t)v(t) + z2(t)u(t)) (19)

is the required field. It is also necessary to apply the condition
ṙ·ż = 0. Since ṙ = (u̇, v̇, u̇v+uv̇), and ż = (ż1, ż2, ż1v+z1v̇+ż2u+z2u̇,
we obtain

[v̇ + (uv).u]ż2 + (uv).u̇z2 + ϕ = 0, (20)

where
ϕ = [u̇ + (uv).v]ż1 + (uv).v̇z1.

If we arbitrarily choose z1, we obtain the function z2 by solving the
linear differential equation (20), and z3 from Eq. (18). The equa-
tion (20) reduces to

ż2 +
(uv).u̇

v̇ + (uv).u
z2 = −

ϕ

v̇ + (uv).u
, v̇ + (uv).u , 0

whose solution is

z2 = e−
∫ (uv). u̇

v̇+(uv).u dt
[
c −

∫
ϕ

v̇ + (uv).u
e
∫ (uv). u̇

v̇+(uv).u dtdt
]
, (21)

c is a constant.
In this way we have proved the following theorems.

Theorem 10. The field z(t) = (z1(t), z2(t), z3(t)) whose components
z1, z2 and z3 satisfy the condition (17) includes the curve (16) un-
der infinitesimal deformation into the family of deformed curves
on the hyperbolic paraboloid (15) with a given precision. �
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Theorem 11. The field z(t) given by (19) where z1(t) is arbitrary
real continuous differentiable function, and z2(t) is given in (21), is
infinitesimal bending field of the curve (16) so that all bent curves
are on the hyperbolic paraboloid (15) with a given precision. �

Example 12. Let the curve C : r(t) = (t, t, t2), t ∈ J ⊆ R, be given
on the hyperbolic paraboloid S : r(u, v) = (u, v, uv). Let us find the
field z according to the previous theorem.

Let be z1(t) = t. Since u(t) = t, v(t) = t, u̇ = 1, v̇ = 1, ż1 = 1,
we obtain ϕ = 1 + 4t2. Also,

z2 = e−
∫

2t
1+2t2

dt
[
c −

∫
1 + 4t2

1 + 2t2 e
∫

2t
1+2t2

dtdt
]

=
c

√
1 + 2t2

− t.

Next, we have

z3 = z1v + z2u =
ct

√
1 + 2t2

.

Therefore, the corresponding infinitesimal bending field is

z(t) =

(
t,

c
√

1 + 2t2
− t,

ct
√

1 + 2t2

)
, (22)

so

rε =

(
t + εt, t + ε

(
c

√
1 + 2t2

− t
)
, t2 + ε

ct
√

1 + 2t2

)
.

It is easy to check that the following is true: ṙ = (1, 1, 2t), ż =(
1, −2ct√

(1+2t2)3
− 1, c√

(1+2t2)3

)
, ṙ · ż = 0,

(t + εt)
(
t + ε

(
c

√
1 + 2t2

− t
))
− t2 − ε

ct
√

1 + 2t2

= ε2t
(

c
√

1 + 2t2
− t

)
= o(ε).

Figure 3 shows infinitesimal bending of curve C under field
(22).

Figure 3. Curve C (red) on the hyperbolic paraboloid and infinites-
imally bent curves (blue), for c = 1 and ε = 0.05, 0.1, 0.25.

INFINITESIMAL BENDING OF CURVES ON HELICOID

Let C : r = r(t) be the curve on the helicoid

S : F(x, y, z) ≡
y
x
− tan

z
c

= 0, (23)

c-constant, with the vector parametric equation

r(u, v) = (u cos v, u sin v, cv).

Then the equation of the curve C has the form

C : r(t) = r(u(t), v(t)) = (u(t) cos v(t), u(t) sin v(t), cv(t)). (24)

Let z(t) = (z1(t), z2(t), z3(t)) be an infinitesimal bending field
which given curve leaves on the helicoid S , where z1(t), z2(t), z3(t)
are real continuous differentiable functions. Then will be

rε(t) = (u(t) cos v(t) + εz1(t), u(t) sin v(t) + εz2(t), cv(t) + εz3(t))

the corresponding infinitesimal bending and the condition

u(t) sin v(t) + εz2(t)
u(t) cos v(t) + εz1(t)

− tan
cv(t) + εz3(t)

c
= o(ε)

must be satisfied. From the last equation we have

u(t) sin v(t) + εz2(t)
u(t) cos v(t) + εz1(t)

−
tan v(t) + tan(ε z3(t)

c )

1 − tan v(t) tan(ε z3(t)
c )

= o(ε),

or, after using Maclaurin series for y = tan x:

u(t) sin v(t) + εz2(t)
u(t) cos v(t) + εz1(t)

−
tan v(t) + ε z3(t)

c + o(ε2)

1 − tan v(t)(ε z3(t)
c + o(ε2))

= o(ε).

From here we obtain

z2(t) − u(t)
sin2 v(t)
cos v(t)

z3(t)
c
− z1(t) tan v(t) − u(t) cos v(t)

z3(t)
c

= 0,

ie.

z2(t) = z1(t) tan v(t) +
z3(t)u(t)
c cos v(t)

. (25)

Thus the field z(t) has the following form

z(t) =

(
z1(t), z1(t) tan v(t) +

z3(t)u(t)
c cos v(t)

, z3(t)
)
, (26)

cos v(t) , 0, and the functions z1(t) and z2(t) are obtained from the
condition

ṙ · ż = 0,

where
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ṙ = (u̇(t) cos v(t) − u(t)v̇(t) sin v(t), u̇(t) sin v(t)

+ u(t)v̇(t) cos v(t), cv̇(t))),

ż =

(
ż1(t), ż1(t) tan v(t) +

z1(t)v̇(t)
cos2 v(t)

+
(ż3(t)u(t) + z3(t)u̇(t)) cos v(t) + z3(t)u(t)v̇(t) sin v(t)

c cos2 v(t)
, ż3(t)

)
.

For simplicity, let us consider a helix which is obtained for
u = 1 and v = t. Therefore, the vector parametric equation of a
helix is

r(t) = (cos t, sin t, ct). (27)

The field z reduces to

z =

(
z1(t), z1(t) tan t +

z3(t)
c cos t

, z3(t)
)
, (28)

cos t , 0. Since ṙ = (− sin t, cos t, c), ż = (ż1(t), ż1(t) tan t +
z1(t)
cos2 t +

ż3(t) cos t+z3(t) sin t
c cos2 t , ż3(t)), using the condition ṙ · ż = 0 we get the equa-

tion

ż3 +
1

1 + c2 z3(t) tan t = −
c

1 + c2

z1(t)
cos t

. (29)

This is the relationship between z1 and z3. We choose one
of these functions arbitrarily, and we get the other by solving the
equation (29). Thus, if z1 is arbitrary real continuous differentiable
function, we obtain

z3(t) = (cos t)
1

1+c2

c1 −
c

1 + c2

∫
z1(t)

(cos t)
2+c2

1+c2

dt

 , (30)

where c1 is a constant.

Theorem 13. The field z(t) = (z1(t), z2(t), z3(t)) whose components
z1, z2 and z3 satisfy the condition (25) includes the curve (24) un-
der infinitesimal deformation into the family of deformed curves
on the helicoid (23) with a given precision. �

Theorem 14. The field z(t) given by (28) where z1(t) is arbitrary
real continuous differentiable function, and z3(t) is given in (30), is
infinitesimal bending field of the helix (27) so that all bent curves
are on the helicoid (23) with a given precision. �

Example 15. Let be z1(t) = (1 + 2c2) sin t cos2 t. Then we obtain
after necessary integration (for c1 = 0) z3(t) = c cos2 t, and z2(t) =

(1 + 2c2) sin2 t cos t + cos t.
The corresponding infinitesimal bending field which given

helix leaves at the helicoid with a given precision is

z(t) = ((1 + 2c2) sin t cos2 t, (1 + 2c2) sin2 t cos t + cos t, c cos2 t).
(31)

By a simple check, we conclude that this is an infinitesimal bend-
ing field and the condition (1) is valid.

Infinitesimal bending of a helix on the helicoid under bend-
ing field (31) is shown in Figure 4.

Figure 4. Helix (red) on the helicoid and infinitesimally bent
curves (blue), for ε = 0.05, 0.15, 0.25.

CONCLUSION

In this paper, infinitesimal bending of curves that are ap-
proximately on the cylinder, the hyperbolic paraboloid and the he-
licoid, respectively, are examined. The corresponding infinitesimal
bending fields are obtained and some examples with graphical il-
lustration are considered. This is a continuation of the research
published in the paper (Najdanović & Velimirović, 2018).
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