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ABSTRACT

For the set of e-simultaneous approximation and e-simultaneous coapproximation, we derive certain Brosowski-
Meinardus type invariant point results in this paper. As a consequence, some results on g-approximation, -
coapproximation, best approximation, and best coapproximation are also deduced.
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INTRODUCTION AND PRELIMINARIES

The study of best approximation theory plays an important
role in nonlinear functional analysis, optimization theory, fixed
point theory, nonlinear programming, game theory, variational in-
equality, complementarity problems, and so forth. The idea of ap-
plying fixed point theorems to approximation theory was initiated
in normed linear spaces by Meinardus (1963). Later, Brosowski
(1969) generalized the result of Meinardus and proved a nice result
on invariant approximation. Thereafter, various generalizations of
Brosowski’s results appeared in the literature.

Singh (1979a) observed that the linearity of the operator .7
and convexity of the set Pg(x) can be relaxed and proved an in-
teresting result. Later, Singh (1979b) demonstrated that previous
result of Singh (1979a) remains valid if .7 is assumed to be nonex-
pansive only on the set Pg(x) U{x}. Thenceforth, many results have
been obtained in this direction by many researchers (see Chan-
dok (2019); Chandok & Narang (2011a,b, 2012a,b, 2013); Khan
& Akbar (2009a,b); Mukherjee & Som (1985); Narang & Chan-
dok (2009a,b,c); Rao & Mariadoss (1983) and references cited
therein).

In this article, we obtain some similar types of results on .7 -
invariant points for the set of e-simultaneous approximation and
&-simultaneous coapproximation for a Hardy-Roger type contrac-
tion mapping defined on a Takahashi space (2, d, W). For such
class of mappings, we also deduce some results on .7 -invariant
points for the set of e-approximation, e-coapproximation, best ap-
proximation and best coapproximation.

Definition 1. Let (27, d) be a metric space, ) # G ¢ 2, F a
nonempty bounded subset of 2. For x € 27, assume that

dy(x) = {supd(y, %) 1 y € ¥},

D(F,G) ={infdg(x) : x € G},

and

Pg(F) = {80 € G : dr(g0) = D(F, G)}-
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An element gy € Pg(F) is said to be a best simultaneous approx-
imation of ¥ with respect to G (see Chandok & Narang (2011a)).
For € > 0, we define

Pge)(F) ={80 € G : dy(80) < D(F,G) + &}

={go € G : supd(y, go) < infsupd(y, g) + &}.
yeF 8€G yeF
An element g € Pg)(¥) is said to be a e-simultaneous approxi-
mation of # with respect to G (see Chandok & Narang (2011a)).

It can be easily seen that for £ > 0, the set Pg(e)(F) is
always a nonempty bounded set and is closed if G is closed.

In case ¥ = {p}, p € Z, then elements of Pg(p) are
called best approximations to p in G and of Pg)(p) are called
g-approximation to p in G.

For £ > 0, we define

supd(y, g)}.

Rge)(F) = {go € G : supd(go, g) + & < inf
§<G 8€G yeF

An element gy € Rg)(F) is said to be a e-simultaneous coapprox-
imation of # with respect to G (see Chandok & Narang (2011a)).

In case ¥ = {p}, p € &, then elements of Rg(p) are called
best coapproximations to p in G and of Rg)(p) are called -
coapproximation to p in G.

Let .7 be a self mapping defined on a subset G of a metric
space 2. A best approximant 1 in G to an element ¥ in 2~ with
T ¥y = ¥ is an invariant approximation in 2" to ¥y if Iy = 1.

Example 2. Let 2~ = R with usual metric and G = [0,1] c 2.
Define . : & — % as

.

Clearly, 7 (G) = G and .7 (2) = 2. Also, Pg(2) = {1}. Hence
Z has a fixed point in 2~ which is a best approximation to 2 in G.
Thus, 2 is an invariant approximation.

Xx<2

2

> ,E¥2> 2,



Definition 3. A sequence {y,} in G is called a e-minimizing se-
quence for 7, if

limsupd(x,y,) < D(F,G) +&.
xef

The set G is said to be e-simultaneous approximatively compact
with respect to 7 (see Chandok & Narang (2011a)) if for every
x € ¥, each e-minimizing sequence {y,} in G has a subsequence
{yn;} converging to an element of G.

Inspired by the work of Takahashi (1970) and Guay et al.
(1982), we have the following definition.

Definition 4. Let 2" be a nonempty set, d be a metric on 2~ and
W:Z xZ x[0,1] > Z be a continuous mapping satisfying,
for all x,y,ue 2 and A € [0, 1],

1. d(u, W(x,p,1)) < Ad(u,x) + (1 — Dd(u, v),
2. d(W(x,u, ), W, u, ) <d(x, ).

Then the triple (2, d, W) is called a Takahashi space.

A normed linear space and each of its convex subset are sim-
ple examples of Takahashi spaces with W given by W(x,p, 1) =
Ax+ (1 =y forx,y € Z and 0 < A < 1. For definition of convex
set, g-starshaped set and starshaped set see Chandok & Narang
(2011a) and references cited therein.

Definition 5. Let G be a nonempty subset of a metric space (2, d)
and Z : G — G be a self map. Then 7 is said to be asymptoti-
cally regular (see, Browder & Petryshyn (1966)) if for all x € G,
d(T"(x), T"(x)) » 0as n — oo.

Definition 6. A mapping 7 : 2 — 2 satisfies condition (A)
(see Mukherjee & Verma (1989)) if

d(T"x,y) < d(x,v),

for all ¥,y € 2" and for some positive integer n.

MAIN RESULTS

Inspired by the work of Hardy-Roger, we define the follow-
ing contraction:

Definition 7. Let (2, d) be a metric space. A mapping 7 : Z~ —
A is called a HR-type contraction if there exist a,8,y € [0, 1)
witha + B8+ 2y < 1, @+ 7y # 1 such that for all ¥, € 2", we have

d(x, 7x)d(n, Tv)
T ivdey +p(d(x,9)) +

y(d(x, Tx) +d(n, T)).

d(Tx,Ty) <

ey

Remark 8. On a metric space, every HR-type contraction has at
most one fixed point. Indeed, let x and v be two distinct fixed points
of 7, which is a HR-type contraction. Then

d(x, 79)d(v, 7v)
T iiday) +p(d(x, ) +

Y(d(x, T%) +d, Tv))
Bd(x,v)),

dx, ) =d(Tx, Ty)

IA
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which is a contradiction as 0 < 8 < 1 and d(x, ) > 0.
The following result will be needed in the sequel.

Proposition 9. Let  : 2 — 2 be a HR-type contraction
on a metric space (X ,d). Then for all x € Z, the sequence
{d(T"x, T %)) is decreasing and T is asymptotically regular.

Proof. Let %y be an arbitrary point in 2" and {x,} be sequence in
Z such that x,,,; = Tx, = T "%, for every n > 0. Using (1), we
have

d(yxnﬂa <7%)
d(}:n+l7 9xn+l)d(xm ﬂxn)

d(1n+2, . l)

< d n+ls *n
: T d gy PG E)
')/(d(X,H], ganrl) + d(xm <?:{n))
_ d(anrl > xn+2)d(xna xn+1)
] T d(*m—l, 3{,1) +ﬁ(d(1n+l ) xn)) +
y(d(:{rﬁl’ xn+2) + d(xn» er—l))
< (O.’ + 'y)d(xnﬂ 5 In+2) + (ﬁ + Y)d(%nn 5 xn)-
This implies
+
e ) @)
—a-vy
Since L = % < 1, the sequence {d(7"xy, 7™ ')} is a de-

creasing sequence. Using mathematical induction, we have

d(xps2, %) < (D)™ d(x1, %0). 3)

Taking the limit n — oo, we have d(3,.2,%,+1) — 0, that is,
d(T "%y, T"x%y) — 0. Hence the result.
Using the above proposition, we prove the following:

Theorem 10. Every HR-type contraction on a complete metric
space has unique fixed point.

Proof. Using Proposition , the sequence {d(.7"xy, 7" 'x)} is de-
creasing and d(.7"xg, 7"*'xp) — 0 as n — oo for all xp € 2.

We claim that {x,} is a Cauchy sequence. For m > n, and L =
B+y

< 1 we have
l-a-vy

d(x,, %) < dEn, 01) +dEpp1, ¥p10) + oo+ d(Xpe1, %)
<L+ L0+ o+ L Yd(x, 1)
La-r
< ( — )
Therefore, d(x,,,%,) — 0, when m,n — oo. Thus {x,} is a Cauchy
sequence in a complete metric space 2~ and so there exists u € 2
such that lim x, = u.

Nov,:/,_):;e’ll show that the point « is a fixed point of .7. On
the contrary, suppose that . u # u, then d(u, 7 u) > 0. Consider
d(x,, Tx,)d(u, T u)

1 +d(x,,u)
Y, Txn) + du, T u))
:ad(x”ixjf;zi(’“;)‘%) + B(d (e, )+

Y(d (@, ¥s1) + d(u, T u)).

d(xo, x1).

dGpe, Tu) =d(Tx,, Tu) < « + B(d(x,, u))+




Taking n — oo, we have d(u, Tu) < yd(u, T u), it implies that
d(u, Zu) = 0. Hence u is a fixed point of .7. Using Remark , we
obtain that .7 has unique fixed point.

Example 11. Let 2" = [0, 1] and d be the usual metric on 2 .
Define 7 : 2 — X as Tx=1{ , X
; 20° £ (5’ 1]
Supposea = §.8= 1,y =1 €[0,]) witha+B+2y = 3 < L.

5. rel0.4]
We may check that

ld(x, Txd(y, Ty)

AT TN < =Ty

1
+ Z(d(x, )+
1

for all x,y € 2. Thus using Theorem , .7 has unique fixed point.
Notice that 0 € 2" is the fixed point of .7 .

Theorem 12. Let (Z7,d, W) be a complete Takahashi space, G be
a nonempty subset of 2" and ¥ a nonempty bounded subset of 2.
Suppose that 9}, is a self map on Pg(F) such that ¥, = T,% =
W(T"x,q, A,), where A, € (0, 1) and satisfying the following for
some positive integer n,

dist(x, [T "x, q))dist(y, [T "y, q])
a +

d(T"x, T"y) < T+ dxy)

Bld(x,y)) +
Y(dist(x, [T %, q)) + dist(y,[T"y. q])),  (4)
for all x,y,q € Z, where a,B,y € [0,1) witha ++2y < 1,

a+y # L If T is continuous and Pg(F) is compact, and q-
starshaped, then it contains a 7 -invariant point.

Proof. Define 7}, : Pg(F) = Pge(F) as Tz = W(T "z, q, A,),
7 € Pge)(F) where {1,} is a sequence in (0, 1) such that 4, — 1.
Consider
d(Tnz, Tny) = dW(T "2, q, ), W(T"y. 4, An))
< 4d(T"z, T"y)
< /ln[a(d(z, (.72, gD)d(y, [T "y, q1)
1 +d(z,y)
YA 172 q) +d0, [T "v,qD)|

d(z, Z,2)d(y, Tny)
= A"[“( 1 +dGy)

WGz, Fp2) +d, %y))],

)+ B+

)+ e+

where A,(a +B+2y) < 1,2,y € Pg)(F). Therefore by Theorem ,
each 7, has a unique fixed point z, in Pg,(F). Since {7 "z,} is a
sequence in the compact set Pg)(¥), there exists a subsequence
{T "z} of {T"z,} such that {T"z,,} = z € Pg)(F). Moreover,

Zn; = %;Zm = W[ﬂ’“zm, 4] = z.

As  is continuous, "z, — T "z. By the uniqueness of
the limit, we have lim 7%z = zand so lim """z = 7z

n—oo n—oo

Now, we show that d(z, .7 z) = 0. Consider
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d(z, 72) < d(z, T"z) + d(T "z, T"*2) + d(T "z, T2).

Letting n — oo, in the above inequality, and using 7 is asymptot-
ically regular, we have d(z, 7z) — 0. Therefore Tz = z. i.e. zis
T -invariant.

Using Proposition 2.1 of Chandok & Narang (2011a), we
have the following result.

Corollary 13. Let (Z7,d, W) be a complete Takahashi space, G be
a nonempty subset of 2" and F a nonempty bounded subset of Z .
Suppose that 9, is a self map on Pg,(F) such that ¥,.1 = Tx =
W(T"x, q, A,), where A, € (0,1) and satisfying the inequality (4).
If T is continuous, G is e-simultaneous approximatively compact
with respect to F and Pg)(F) is starshaped, then it contains a
T -invariant point.

For ¥ = {x} and & = 0, we have the following result on the
set of best approximation.

Corollary 14. Let (Z,d, W) be a complete Takahashi space, G
be a nonempty subset of X . Suppose that 9, is a self map on
Pge)(F) such that ¥,.1 = Tpx = W(T "%, q, Ay), where A, € (0, 1)
and satisfying the inequality (4). If  is continuous, G is approxi-
matively compact, 7 -invariant subset of 2 and ¥ a 7 -invariant
point and Pg(x) is starshaped, then Pg(x) contains a 7 -invariant
point.

We now prove a result for .7 -invariant points from the set of
g-simultaneous coapproximations.

Theorem 15. Let (2,d, W) be a complete Takahashi space, G
be a nonempty subset of Z and ¥ a nonempty bounded sub-
set of 2. Suppose that 7, is a self map on Rge)(F) such that
%41 = Thx = W(T "%, q, A,), where A, € (0, 1) and satisfying the
inequality (4). Assume that 7 is continuous and satisfying condi-
tion (A). If Rg)(F) is compact and q-starshaped, then Rg(F)
contains a . -invariant point.

Proof. Let gy € Rg() (). Consider

d(T"go, 8) + & < d(go,8) + € < infyeg SUpyerd(y, 8,

and so yngo € Rg(g)(f) ie. I" Rg(g)(?_) s Rg(@(?).
Since Rg)(F) is g-starshaped, W(z,q,1) € Rg)(F) for all z €
Rg@e(F), 4 € [0,1]. Let {4,}, 0 < 4, < 1, be a sequence
of real numbers such that 4, — 1 as n — oo. Define 7, as
Tn(2) = W(T"z,q, 4n), 2 € Rge)(F). Since 7 is a self mapping
on Rg)(F) and Rg,)(F) is starshaped, each .7}, is a well defined



and maps Rg)(F) into Rg)(F). Moreover,
d(%ya %Z) = d(W(yny’ CI, /ln)7 W(ynz7 qa /ln))
< 4d(T"y, T7)

<, [a(d(y, 7"y, qDd(z, [Tz q])
1 +d(y,2)

Y. [Ty, q]) + d(z. [Tz, q]))]

d(y, 7"y)d(z, 7"7)
= /l"[a/( 1+d(y,2)

Yd(y, T"y)d(z., y”z»],

)+ B, o+

)+ ey, )+

where A,[a + 8] < 1. So by Theorem each .7, has a unique fixed
point u, € Rge)(F) i.e. Fu, = u, for each n. Since {T"u,} is a
sequence in the compact set Rg(.)(¥), there exists a subsequence
{T"uy,} of {7 "u,} such that {7 "u,,} — u € Rg(F). Moreover,

Up, = %iuni = W[ﬂﬂiu”i’ q, /ln,-] - U.

As 7 is continuous, .7 "u,, — 7 "u. By the uniqueness of
the limit, we have lim 7" u = u and so lim 9"y = Tu.
n—oo n—oo

Now, we show that d(u, 7 u) = 0. Since 7 is asymptotically
regular, we have

du, Tu) < du, T"u) + d(T"u, Ty + d(T"u, Tu) — 0.
Therefore T u = u. i.e. uis 7 -invariant.
Remark 16.

1. By taking 7 = {21, 2}, ¥1, %2 € Z, the set Pg,)(F) (respec-
tively, Rg) (%)) is the set of e-simultaneous approximation
(respectively, e-simultaneous coapproximation) to the pair
of points ¥, ¥, and so we can obtain the results for such pair
of points Pg)(F) (respectively, Rg)(F)).

2. By taking ¥ {x}, x € 2, the set Pg)(x) (respec-
tively, Rg() (%)) is the set of g-approximation(respectively,
g-coapproximation) to point ¥ and so we can obtain the
results on the set of e-approximation (respectively, &-
coapproximation).

3. By taking ¥ = {x} and £ = 0, we can obtain the results on
the set of best approximation (respectively, best coapproxi-
mation).
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