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ABSTRACT

The paper presents a new proof of Ahlfors lemma about Green Stokes formula for distributions. The proof is per-
formed directly using test functions instead of using convolutions.
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INTRODUCTION

The paper presents a new proof of Ahlfors lemma about
Green Stokes formula for distributions (Ahlfors, 2006). The new
proof is performed directly using test functions instead of using
convolutions.

If there is interest in solving the equation

fz̄ = µ fz (1)

where ||µ||∞ ⩽ k < 1, Arsenović et al. (2012); Arsenović & Matel-
jević (2021) let’s treat at the beginning the case where µ has com-
pact support so that f will be analytic at ∞. The fixed exponent
p > 2 will be used, such that kCp < 1.
Theorem 1. If µ has compact support there exist a unique solution
f of (1) such that f (0) = 0 and fz − 1 ∈ Lp.

According to Theorem 1 following conclusion can be made:
Lemma 1. ||gz − fz||p → 0 and g→ f uniformly on compact sets.

In order to show that f has derivatives if µ has, a slight gen-
eralization of Weyl’s lemma is made:
Lemma 2. If p and q are continuous and have locally integrable
distributional derivatives that satisfy pz̄ = qz, then there exists a
function f ∈ C1 with fz = p and fz̄ = q. (Ahlfors, 2006)

Such results are useful in deriving solutions of Beltrami’s
equation (1). One method, which works in higher dimensions as
well is to use convolutions, see (Arsenović at al., 2021). Here we
work directly with test functions. A very concise presentation is
given in (Ahlfors, 2006).

The new proof of Lemma 2 will be performed directly using
test functions.

In the first part of the paper, Lemma 3, Lemma 4 and Lemma
5 with their proofs are presented. Cantor’s theorem on uniform
continuity (Carleson & Jones, 1992), Fubini’s theorem (Arsenović
at al., 2012), (Mateljević, 2013a, 2012, 2013b) and the Mean value
theorem (Duren, 2004) were used in the proofs.

Below are given Theorem 2 and Theorem 3 with proofs,
which represent a new proof of Ahlfors lemma about Green Stokes
formula for distributions. A new proof is provided directly using
test functions instead of using convolutions.

THEORETICAL PART

Let F : R −→ R be defined as

F(t) =

e−1/t, t > 0.

0, t ⩽ 0.
(2)

Lemma 3. The function F is infinitely differentiable. Let C be a
set of all functions f : R −→ R such that there exists a real rational
function r such that we have

f (t) =

r(x)e−1/t, t > 0.

0, t ⩽ 0.
(3)

Let f be an arbitrary function from the C class. Then it holds
that

lim
t→0+

f (t) = lim
t→0+

r(t)
e1/t = lim

x→∞

r(1/x)
ex = 0 = f (0), (4)

so the function f is continuous. It also holds that

lim
t→0+

f (t) − f (0)
t

= lim
t→0+

f (t)
t
= lim

t→0+

r(t)
t e1/t = lim

x→∞

x r(1/x)
ex = 0, (5)

so the function f is differentiable and we have

f ′(t) =

 (r(t)′ + r(t)/t2)e−1/t, t ≥ 0.

0, t ⩽ 0.
(6)

Hence it follows that f ′ ∈ C.
It follows in particular that the functions from the C class

are differentiable and that the class C is closed for derivatives. It
clearly implies that all functions from the class C are infinitely dif-
ferentiable. In particular, it holds that F is infinitely differentiable.

Let ε > 0. Since the function x 7→ F(ε2 − x2) is indefinitely
differentiable and positive on the interval (−ε, ε), and equals zero
outside it, its integral inR is finite and positive, and the Cε constant
can be defined as

Cε = (
∫
R

F(ε2 − x2) dx)−1. (7)

Let us define the function ωε : R −→ R with ωε(x) =
CεF(ε2 − x2). It is infinitely differentiable, non-negative and it
holds that

∫
R
ωε(x) dx = 1.
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Let us define the function µε : R −→ R in the following
way: µε(x) =

∫ x
0 ωε/2(t − ε/2) dt. It is also infinitely differentiable,

non-decreasing and it holds that µε(x) = 0 ⇔ x ⩽ 0 and µε(x) =
1⇔ x ⩾ ε.

For the given a, b ∈ R such that a < b and b − a > 2ε let us
define the function ηa,b,ε : R −→ R in the following way:

ηa,b,ε(x) = {

µε(x − a), x < (a + b)/2,

µε(b − x), x ⩾ (a + b)/2.
(8)

This is an infinitely differentiable function equal to zero out-
side the interval (a, b), equal to one in the segment [a + ε, b − ε],
increasing in the segment [a, a + ε] and decreasing in the segment
[b − ε, b].
Lemma 4. Let a, b ∈ R such that a < b and f , g : (a, b) −→ R
functions such that f is continuous and bounded and g s integrable
without changing the sign. Then there exists c ∈ (a, b) such that
the following holds:∫ b

a
f (x)g(x) dx = f (c)

∫ b

a
g(x) dx. (9)

Proof. Since g does not change the sign,
∫ b

a g(x) dx = 0 is possible
only when g ≡ 0 almost everywhere and in that case the claim
holds true for each c ∈ (a, b).

Let us assume, therefore, that
∫ b

a g(x) dx , 0. In addition, if
there is a constant v such that µ({x ∈ (a, b)|g(x) > 0, f (x) , v}) = 0
holds, then the claim holds for each c ∈(a,b) such that g(c)>0 and
f(c)=v holds.

Without loss of generality, we can assume that there is no
such constant v.

For

m = inf
x∈(a,b)

f (x), M = sup
x∈(a,b)

f (x) (10)

we have

m
∫ b

a
g(x) dx =

∫ b

a
m g(x) dx <

∫ b

a
f (x)g(x) dx

<

∫ b

a
M g(x) dx = M

∫ b

a
g(x) dx, (11)

that is

m <

∫ b
a f (x)g(x) dx∫ b

a g(x) dx
< M. (12)

Due to the continuity of the f function, there exists a c ∈
(a, b) for which

f (c) =

∫ b
a f (x)g(x) dx∫ b

a g(x) dx
, (13)

holds and thus completes the proof of the lemma.
Lemma 5. Let a, b, c, d ∈ R be such that a < b, c < d and f :
D −→ R continuous function where D = [a, b] × [c, d]. Then we
have

lim
ε→0+

"
D

f (x, y)ηa,b,ε(x)η′c,d,ε(y) dx dy (14)

=

∫ b

a
f (x, c) dx −

∫ b

a
f (x, d) dx,

lim
ε→0+

"
D

f (x, y)η′a,b,ε(x)ηc,d,ε(y) dx dy (15)

=

∫ d

c
f (a, y) dy −

∫ d

c
f (b, y) dy.

Proof. For the given ε > 0, define the rε function as

rε(x) =
∫ d

c
f (x, y)η′c,d,ε(y) dy − ( f (x, c) − f (x, d)). (16)

From Cantor’s theorem on uniform continuity, it follows that the
function f in uniformly continues and therefore the rε function is
continuous. According to the mean value theorem, it holds that

∫ d

c
f (x, y)η′c,d,ε(y) dy =

∫ c+ε

c
f (x, y)ωε/2(y − c + ε/2) dy

− intd
d−ε f (x, y)ωε/2(d − y − ε/2) dy

= f (x, c′)
∫ c+ε

c
ωε/2(y − c + ε/2) dy (17)

− f (x, d′)
∫ d

d−ε
ωε/2(d − y − ε/2) dy

= f (x, c′) − f (x, d′)

for some c′ ∈ (c, c + ε) and d′ ∈ (d − ε, d). From there as
well as from Cantor’s theorem on uniform continuity, it follows
that rε uniformly tends to zero when ε tends to zero. According to
Fubini’s theorem, the following holds

"
D

f (x, y)ηa,b,ε(x)η′c,d,ε(y) dx dy

=

∫ b

a

∫ d

c
f (x, y)ηa,b,ε(x)η′c,d,ε(y) dy dx

=

∫ b

a
ηa,b,ε(x)

∫ d

c
f (x, y)η′c,d,ε(y) dy dx

=

∫ b

a
ηa,b,ε(x)(rε(x) + f (x, c) − f (x, d)) dx (18)

=

∫ a+ε

a
(ηa,b,ε(x) − 1)(rε(x) + f (x, c) − f (x, d)) dx

+

∫ b

b−ε
(ηa,b,ε(x) − 1)(rε(x) + f (x, c) − f (x, d)) dx

+

∫ b

a
rε(x) dx +

∫ b

a
f (x, c) dx −

∫ b

a
f (x, d).

When ε tends to zero, the first two addends tend to zero be-
cause the subintegral function is bounded as continuous on a com-
pact set, while the third addend tends to zero on the basis of the
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uniform convergence of the rε function to zero. From there, the
first part of the claim follows while the second part can be proven
analogously.

Let us further identify the complex plane with R2. Let Ω
denote a simply connected region in the complex plane. Let f :
Ω −→ Cwhich has partial derivatives fx and fy. The partial deriva-
tives with respect to z and z̄ are defined as

fz =
fx − i fy

2
, fz̄ =

fx + i fy
2
. (19)

Let p and q are now continuous functions which map Ω into
C let γ denote a rectifiable curve in Ω. By the integral∫

γ

p dz + q dz̄ (20)

we mean the integral∫
γ

(p + q) dx + i(p − q) dy. (21)

NUMERICAL RESULTS

Theorem 2. The following conditions are equivalent:

A Integral (20) is equal to zero with respect to each rectifiable
loop γ in Ω.

B Integral (20) is equal to zero with respect to each rectangle
loop γ in Ω.

C There exists a function F : Ω −→ C which has partial
derivatives and it is such that Fz = p and Fz̄ = q.

Proof. Since each rectangle loop is rectifiable, B follows from A.
Let us derive A from C. Let us derive 1 from 3.

∮
γ

p dz + q dz̄ =

∮
γ

(p + q) dx + i(p − q) dy

=

∮
γ

(Fz + Fz̄) dx + i(Fz − Fz̄) dy (22)

=

∮
γ

Fx dx + Fy dy = 0.

Suppose that B holds and let us derive C. By a special path
determined by the vertices

(x0, y0), . . . , (xn, yn) (23)

in the denotation s[x0, y0; . . . ; xn, yn] we mean a zig-zag line de-
termined by the vertices (23) so that the whole line is in Ω, that
it is parameterized by a parameter from the segment [0, 1], that it
is linear part by part, and that, for each k < n it holds xk = xk+1

or yk = yk+1. By the value along the rectifiable path γ in Ω in the
denotation V(γ) we mean value (20).

Let γ and δ be special paths such that γ(0) = δ(0) and γ(1) =
δ(1). Let us prove that the following holds:∫

γ

p dz + q dz̄ =
∫
δ

p dz + q dz̄. (24)

Let us prove it first in the case when the paths γ and δ are
in the I × J set for some non-empty open intervals I and J of a
real line such that I × J ⊆ Ω. Based on assumption B, for any
x0, x1, x2 ∈ I and y0, y1, y2 ∈ J

V(s[x0, y0; x1, y0; x2, y0]) = V(s[x0, y0; x2, y0]), (25)

V(s[x0, y0; x1, y0; x1, y1]) = V(s[x0, y0; x0, y1; x1, y1]), (26)

hold as well as

V(s[x0, y0; x1, y0; x1, y1; x2, y1])

= V(s[x0, y0; x1, y0; x2, y0; x2, y1]) (27)

= V(s[x0, y0; x2, y0; x2, y1]).

Let x0, . . . , xn ∈ I and y0, . . . , yn ∈ J for n ⩾ 2. If there exists
i ∈ {1, . . . , n − 1} holds that xi−1 = xi = xi+1 or yi−1 = yi = yi+1,
then there exist x′0, . . . , x

′
n−1 ∈ I and y′0, . . . , y

′
n−1 ∈ J such that we

obtain

V(s[x0, y0; . . . ; xn, yn]) = V(s[x′0, y
′
0; . . . ; x′n−1, y

′
n−1]),

(x0, y0) = (x′0, y
′
0), (28)

(xn, yn) = (x′n−1, y
′
n−1).

The same also holds in the case when such i does not exist
but when n ⩾ 3. Hence, for any x0, . . . , xn ∈ I and y0, . . . , yn ∈ J it
holds that

V(s[x0, y0; . . . ; xn, yn]) = V(s[x0, y0; xn, y0; xn, yn]) (29)

= V(s[x0, y0; x1, yn; xn, yn]).

This means that V(µ) for the special path µ in I × J depends
only on the initial and the final point of the path µ, which thus
proves the claim in this case. Let us further deal with a general
case.

Since Ω is a simply connected region, we can choose con-
tinuous mapping H : [0, 1]2 −→ Ω such that for every t ∈ [0, 1]
it holds that H(0, t) = γ(t) and H(1, t) = δ(t), and also that
for every x ∈ [0, 1] it holds that H(x, 0) = γ(0) = δ(0) and
H(x, 1) = γ(1) = δ(1).

The set H[[0, 1]2] is a compact subset of the open set Ω, so
there exists some ε > 0 such that for every x, t ∈ [0, 1] it holds that
B(H(x, t), ε) ⊆ Ω.

According to Cantor’s theorem on uniform continuity, there
exists n ∈ N such that it holds

(∀x1, t1, x2, t2 ∈ [0, 1])(|x2 − x1| + |t2 − t1| < 1/n⇒

d(H(x1, t1),H(x2, t2)) < ε).

For i, j ∈ {0, . . . , n} let us define X j
i and Y j

i as

(X j
i ,Y

j
i ) = H(i/n, j/n). (30)

Let i1, i2, j1, j2 ∈ {0, . . . , n} be such that it holds |i1 − i2|, | j1 −
j2| ⩽ 1. Then

d((X j1
i1
,Y j1

i1
), (X j2

i2
,Y j2

i2
)) ⩽ ε/5. (31)
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Let us also, for every i, j ∈ {0, . . . , n} define a path

π
j
i = s[x0, y0; . . . ; x2 j−1, y2 j−1], (32)

where

(x0, y0) = (X0
i ,Y

0
i ) = H(i/n, 0) = γ(0) = δ(0), (33)

(x2 j−1, y2 j−1) = (X j
i ,Y

j
i ) = H(i/n, 1) = γ(1) = δ(1),

x2k−1 = Xk−1
i , x2k = Xk

i , y2k−1 = y2k = Yk
i , for 1 ⩽ k < n.

For i, k < n let us define the special path µk
i as

µk
i = s[Xk

i ,Y
k
i ; Xk

i ,Y
k+1
i ; Xk+1

i ,Y
k+1
i ; Xk+1

i+1 ,Y
k+1
i ; Xk+1

i+1 ,Y
k+1
i+1 ; (34)

Xk
i+1,Y

k+1
i+1 ; Xk

i+1,Y
k
i+1; Xk

i+1,Y
k
i ; Xk

i ,Y
k
i ].

All points of the path µk
i are at a mutual distance smaller than

ε/4, so the path µk
i lies in B((Xk

i ,Y
k
i ), ε/4), so there are intervals I

and J of real line, which are of the width ε/2 and such that it holds
B((Xk

i ,Y
k
i ), ε/4) ⊆ I × J ⊆ B((Xk

i ,Y
k
i ), ε). It thus follows that the

path µ is in I × J and that I × J ⊆ Ω, resulting in V(µk
i ) = 0. On

the basis of this, it is proven by induction that for all i, k < n the
following holds:

V(πk
i+1) − V(πk

i ) = V(s[Xk
i ,Y

k
i ; Xk

i+1,Y
k
i ; Xk

i+1,Y
k+1
i ]). (35)

In particular, for k = n it holds that V(πn
i ) = V(πn

i+1), from
where it follows that V(πn

0) = V(πn
n). For any k < n the restric-

tions of the paths πn
0 and γ on the segment [k/n, (k + 1)/n] have

a common beginning (Xk
0,Y

k
0) and a common end (Xk+1

0 ,Y
k+1
0 ) and

they are within the disc B((Xk
0,Y

k
0), ε/4), so it is similarly proven

as before that the integrals of p dz + q dz̄ are equal by themselves,
which therefore proves that both V(γ) = V(πn

0) i V(δ) = V(πn
n).

Let us chose arbitrary(a, b) ∈ Ω. For each (u, v) ∈ Ω, let us
define F (u, v) as follows. Let γ is arbitrary special path such that
γ (0) = (a, b) and γ (1) = (u, v) hold. Let

F (u, v) =
∫
γ

(p + q) dx + i (p − q) dy.

This definition is correct because of independence of the value on
the choice of γ .Then Fx = p + q and Fy = i (p − q) hold and
therefore Fz = p and Fz = q hold.
Theorem 3. The following conditions are equivalent:

A For any infinitely differentiable function φ : Ω −→ C with
compact support, it holds that"

Ω

p(x, y)φz̄ dx dy =
"
Ω

q(x, y)φz dx dy.

B For any closed rectangular domain D ⊆ Ω and any infinitely
differentiable function φ : Ω −→ C with support D it holds
that "

D
p(x, y)φz̄ dx dy =

"
D

q(x, y)φz dx dy.

C There exists a function F : Ω −→ C with continuous partial
derivatives such that Fz = p and Fz̄ = q hold.

Proof. It is clear that B follows from A. Suppose B and let us prove
C. Let D = [a, b] × [c, d] for some a, b, c, d ∈ R such that a < b
and c < d. For ε > 0 such that ε < (b−a)/2, (d−c)/2 let us define
hε, kε and φε as

hε = ηa,b,ε, kε = ηc,d,ε, (36)

φε : R2 −→ R, φε(x, y) = hε(x)kε(y). (37)

With the truncated forms of p = p(x, y), φε = φε(x, y), h =
h(x) and k = k(y), it follows from B that"

D
p (∂xφε + i∂yφε) dx dy =

"
D

q (∂xφε − i∂yφε) dx dy, (38)

"
D

(p − q) ∂xφε dx dy + i
"

D
(p + q) ∂yφε dx dy = 0, (39)"

D
(p + q) ∂yφε dx dy − i

"
D

(p − q) ∂xφε dx dy = 0.

On the basis of Lemma 5, allowing ε to tend to zero, we
conclude that the following holds∫ b

a
(p + q)(x, c) dx −

∫ b

a
(p + q)(x, d) dx + i

+

∫ d

c
(p − q)(a, y) dy − i

∫ d

c
(p − q)(b, y) dy = 0, (40)

namely ∮
∂D

(p + q) dx + i(p − q) dy = 0, (41)

so on the basis of Theorem 2 it holds B. Let us suppose C
and let us derive A. It should be actually proven that the following
holds "

Ω

Fzφz̄ dx dy =
"
Ω

Fz̄φz dx dy, (42)

i.e."
Ω

(Fx − iFy)(φx + iφy) dx dy (43)

=

"
Ω

(Fx + iFy)(φx − iφy) dx dy,

which is equivalent to"
Ω

Fxφy dx dy =
"
Ω

Fyφx dx dy. (44)

Let K ⊆ Ω be a compact support of the function φ. Each
point of the set K can be paired with an open rectangle whose
sides are parallel to the coordinate axes and whose closure lies in
Ω. Such a cover has a definite subcover; therefore, without loss of
generality, we can assume that K is a non-empty finite union of
closed rectangles with non-empty interior and sides parallel to the
coordinate axes.

Suppose that D = [a, b]× [c, d] is the smallest closed rectan-
gle with its sides parallel to the coordinate axes, such that K ⊆ D.
Let us pair each x ∈ [a, b] with the set

Dx = {y ∈ [c, d] : (x, y) ∈ K}. (45)
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For each x, the set Dx is a finite union of disjoint closed
intervals. On the endpoints of each of these intervals, the function
φ is annuled together with its partial derivatives. Hence, if [u, v] is
some of these intervals, then it holds that∫ v

u
Fy(x, y)φx(x, y) dy = F(x, v)φx(x, v) − F(x, u)φx(x, u)

−

∫ v

u
F(x, y)φxy(x, y) dy (46)

= −

∫ v

u
F(x, y)φxy(x, y) dy.

By adding the integrals as a function of all disjoint closed
intervals which give the set Dx in the union, we conclude that the
following holds∫

Dx

Fy(x, y)φx(x, y) dy = −
∫

Dx

F(x, y)φxy(x, y) dx dy. (47)

According to Fubini’s theorem, we have"
K

Fy(x, y)φx(x, y) dx dy =

∫ b

a

∫
Dx

Fy(x, y)φx(x, y) dx dy

= −

∫ b

a

∫
Dx

F(x, y)φxy(x, y) dx dy

= −

"
K

F(x, y)φxy(x, y) dx dy. (48)

Since K is the support of the function φ, it holds that"
Ω

Fyφx dx dy =
"

K
Fyφx dx dy = (49)

−

"
K

F(x, y)φxy(x, y) dx dy = −
"
Ω

F(x, y)φxy(x, y) dx dy.

The formula"
Ω

Fxφy dx dy = −
"
Ω

F(x, y)φxy(x, y) dx dy, (50)

is similarly proven thus finally leading to (44).

APPENDIX

Recall that this paper is related to a paper by authors Arsen-
ović, M. and Mateljević, M. titled "On Ahlfors-Beurling Operator"
published in Journal of Mathematical Sciences, 2021 (referenced
below Arsenović, M., Mateljević, M. On Ahlfors–Beurling Oper-
ator. J Math Sci 259, 1–9 (2021). https://doi.org/10.1007/
s10958-021-05596-9)

In the above mentioned paper authors Miodrag Mateljević
and Miloš Arsenović investigate regularity properties of solutions
of Beltrami equation expressed in terms of moduli of continuity.
Authors Miodrag Mateljević and Miloš Arsenović prove that a
class of Calderon-Zygmund operators, including Ahlfors-Beurling
operator, preserves certain type of modulus of continuity of com-
pactly supported functions. They have also proved a purely topo-
logical result which easily gives injectivity of normal solutions of
Beltrami equation.

Theorem 1 and Theorem 2 from the above mentioned paper
are given below. In order to make it easier for readers to under-
stand the problems that the authors Miodrag Mateljević and Miloš
Arsenović deal with in the mentioned paper, a complete proof of
Theorem 1 is given.

For the convenience of the readers, some definitions, terms
and considerations will be mentioned (in the same way as pre-
sented in the mentioned paper).

Authors choose a majorant ω i.e. a continuous increasing
and concave function, ω(t), t ⩾ 0 such that ω(0) = 0 and ω(λt) ⩽
Cλω(t), λ > 1.

Authors impose the following two conditions on majorant
ω: ∫ 1

0

ω(t)
t

dt ⩽ A1ω(δ), 0 < δ < 1. (1)∫ 1

0

ω(t)
t

dt ⩽ A2
ω(δ)
δ
, 0 < δ < 1. (2)

The operator T is defined by the following formula:

T f (x) = lim
ε→0

∫
Rn

Kε(y) f (x − y) dy,

where Kε denotes a truncated kernel

Kε(x) =

 K(x), |x| ⩾ ε,

0, |x| < ε.

In the same paper it is proved:

T f (x) =
∫

K(y)[ f (x − y) − f (x)] dy, x ∈ Rn (3)

Theorem 1. Assume a majorant ω satisfies conditions (1) and (2).
Then for every R > 0 there is a constant C = C(R, n,Ω, ω) such
that

||T f ||ω ⩽ C|| f ||ω, f ∈ ∧R
ω. (4)

We note the following well known estimate for the kernel K:

|K(x + h) − K(x)| ⩽ C(Ω)
|h|
|x|n+1 , x , 0, h ⩽ |x|/3. (5)

Let us choose f ∈ ΛR
ω and x, x + h ∈ Rn, where |h| ⩽ 1. From (3)

we obtain

T f (x) =
(∫
|y|⩽3|h|

+

∫
3|h|⩽y⩽|x|+R

)
K(y)[ f (x − y) − f (x)] dy = I1 + I2.

(6)
Analogously to the argument leading to (11) we estimate I1:

||I1|| ⩽ ||Ω||∞|| f ||ω|S n−1|

∫ 3|h|

0

ω(t)
t

dt ⩽ C(n,Ω, ω)|| f ||ωω(|h|).

(7)
where we used condition (1). Replacing x with x + h in (6)

we obtain

T f (x) =
(∫
|y|⩽3|h|

+

∫
3|h|⩽y⩽|x|+R

)
K(y)[ f (x+h−y)− f (x+h)] dy = J1+J2,

(8)
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where |J1| ⩽ C(n,Ω, ω)|| f ||ωω(|h|) and

J2 =

∫
3|h|⩽|y|⩽|x+h|+R

K(y)[ f (x + h − y) − f (x + h)] dy

=

∫
3|h|⩽|y|⩽|x+h|+R

K(y)[ f (x + h − y) − f (x)] dy (9)

=

∫
3|h|⩽|z+h|⩽|x+h|+R

K(z + h)[ f (x − z) − f (x)] dz

=

∫
3|h|⩽|z|⩽|x|+R

K(z + h)[ f (x − z) − f (x)] dz + E = J̃2 + E.

Note that cancellation property enabled replacement of f (x+
h) with f (x). Now we estimate the error term E, which results
from a change of domain of integration from one spherical ring
A(−h; 3|h|; |x + h| + R) to another one A(0; 3|h|; |x| + R). Regard-
ing the change of inner limits, the size of K(z + h) is estimated
by C(n)||Ω||∞|h|−n, the measure of the symmetric difference of
B(0; 3|h|) and B(−h; 3|h|) is estimated by C(n)|h|n and the size of
f (x−z)− f (x) is estimated by C(ω)|| f ||ωω(|h|). Hence the error due
to the change of inner limits is estimated by C(n,Ω, ω)||Ω||∞ω(|h|).

Regarding the change of outer limits, the measure of the
symmetric difference of domains of integration is estimated by
C(n)|h|(|x| + R)n−1, the size of K(z + h) by ||Ω||∞(|x| + R)−n and
the size of f (x − z) − f (x) by 2|| f ||∞, hence the contribution to the
error term is bounded by C||Ω||∞|| f ||∞|h|, where C is a constant de-
pending only on n. Since || f ||∞ ⩽ C(ω,R)|| f ||ω and δ ⩽ Cω(δ) for
0 ⩽ δ ⩽ 1 we obtain

|E| ⩽ C(R, n,Ω, ω)|| f ||ωω(|h|). (10)

Combining (6), (7), (8), (9) and (10) we obtain

|T f (x + h) − T f (x)| = |J1 + J̃2 + E − I1 − I2|

⩽ |J̃2 − I2| + |E| + |I1| + |J1| = E1 + E2

where

E2 = |E| + |I1| + |J1| ⩽ C(R, n,Ω, ω)|| f ||ωω(|h|)

and

E1 =

∣∣∣∣∣∣
∫

3|h|⩽|z|⩽|x|+R
[K(z + h) − K(z)][ f (x − z) − f (x)] dz

∣∣∣∣∣∣ .
Since f is supported in B(0; R) we can assume ω(t)s is con-

stant for t ⩾ 2R, in particular ω(t) ⩽ ω(2R). We use (5) and (2) to
estimate E1:

E1 ⩽ C(Ω)
∫

3|h|⩽|z|⩽|x|+R

|h|
|z|n+1 | f (x − z) − f (x)| dz

⩽ C(Ω)|h||S n−1||| f ||ω

∫ |x|+R

3|h|

ω(t)
t2 dt

= |h|C(n,Ω)|| f ||ω

(∫ 1

3|h|
+

∫ ∞

1

)
ω(t)
t2 dt

⩽ Cn|| f ||ω(A2ω(|h|) + ω(2R)|h|)

C(R, n,Ω, ω)|| f ||ωω(|h|).

Note that this was the only estimate in the proof that relied
on (2). This gives desired estimate for |h| ⩽ 1, the estimate for |h| >
1 follows easily from the vanishing of T f at infinity. In fact, since
the support of f is compact we have the following asymptotic:
T f (x) = O(|x|−n)) as x→ +∞; we leave details to the reader.
Theorem 2. Let f be a quasiconformal mapping between bounded
planar domains D and G with C1,α boundaries, where 0 < α < 1.
Then the following three conditions are equivalent.

(A) f ∈ C1,α(D) and f −1 ∈ C1,α(G).
(B) The complex dilatation µ f is α Hölder continuous on D.
(C) The complex dilatation µ f −1 is α Hölder continuous on

G.
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