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ABSTRACT 

The field of compressive sensing (CS) has emerged as a transformative approach in the acquisition and processing 

of high-dimensional data. This paper presents a comprehensive study on the application of compressive sensing 

techniques to advanced image processing and digital image transmission. By leveraging the inherent sparsity in 

natural images, CS allows for significant reductions in the amount of data required for accurate reconstruction, 

thereby overcoming the limitations imposed by the traditional Shannon-Nyquist sampling theorem. We explore 

the theoretical foundations of CS, including the principles of sparsity and incoherence, and provide a detailed 

overview of the Orthogonal Matching Pursuit (OMP) algorithm, a prominent greedy algorithm used for sparse 

signal recovery. Experimental results demonstrate the efficacy of CS in improving image reconstruction quality, as 

evidenced by enhancements in peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM). 

Additionally, we discuss the practical implementation of CS in single-pixel cameras and its potential impact on 

future imaging technologies. The findings suggest that CS offers a robust framework for efficient image 

acquisition and processing, making it a valuable tool for various applications in multimedia, medical imaging, and 

remote sensing. 
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INTRODUCTION 

One of the most prevalent trends in contemporary 

technologies is the collection (acquisition), transmission, 

analysis, and processing of large amounts of data. Mass data 

processing is a common issue when it comes to multimedia 

data, medical and biomedical data, radar signals, and similar, 

and traditional sensor devices face strict requirements when 

performing acquisition according to the already standard 

Shannon-Nyquist criterion (sampling theorem), which states 

that the sampling rate of a signal must be at least twice the 

highest frequency present in the signal spectrum. 

In the last decade, decade and a half, new methods and 

techniques known collectively as compressive sensing have 

been intensively developed, which surpass the boundaries of 

the existing sampling theory by applying the concept of data 

compression during the sampling/observing process itself. This 

reduces the amount of collected-measured data and thereby 

significantly reduces the engagement of available resources 

(time, energy, device complexity, etc.) on the end, i.e., the 

sensor side of the system. 
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This paper, in addition to describing the concept of 

compressive sensing, examines the application of a specific 

algorithm from the group of “greedy algorithms” for fast 

image reconstruction. The paper is divided into three main 

parts: theoretical framework with an intuitive approach, 

adaptation of the algorithm for advanced image processing, 

and presentation of the results achieved by applying such an 

algorithm on concrete examples and obtained performances 

from the perspective of peak signal-to-noise ratio (PSNR) and 

structural similarity index (SSIM). 

THEORETICAL PART 

Compressive sensing (cs) 

Definition and Basic Concept 

The concept of compressive sensing has received 

different names over a relatively short period, depending on its 

application (compressive sampling, sub-sampling, sparse 

sensing, sub-space sampling, etc.), and a relatively small 

number of papers have been published in Serbian where the 

general terminology in this field has not been adopted. Taking 

into account all these applications and perspectives on the 

unique principle, the terms used in this paper are those the 

author considered appropriate translations for the given 
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context. Thus, the term observation (of images) can in this 

case be considered synonymous with the term reading (of 

spectra) or sampling (of signals), while essentially retaining 

the same observational course. 

The initial setup of the concept known as compressive 

sensing, presented in (Donoho, 2006), states that a signal can 

be reconstructed from only a small set of randomly measured 

values - samples, if the signal can be represented in a sparse 

(compressed) form in some transform domain. Sparsity, as a 

property of the signal, means that the signal can be represented 

in a certain (transform) domain with a small number of non-

zero samples, implying fewer numerical computations, 

memory, and consumption for signal reconstruction. The 

second condition, of a technical nature, is the incoherence 

between the measurement (sampling) and the transformation 

(sparsifying) operator matrices. 

The principle, initially adopted from image and signal 

compression techniques, can be compared with classical 

sampling theory and represented with a block diagram 

(Stankovic et al., 2016) in (Fig. 1): 
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Figure 1. Comparative overview of classical and compressive 

sensing. 

Parts of both systems are illustratively represented by 

blocks of different colors, with lighter shades representing 

blocks that are less burdened in terms of engaged resources. It 

is noticeable that in the case of compressive sensing, given the 

smaller amount of information collected, the focus of engaged 

resources shifts from the end points of the system (sensors, 

acquisition cards, high-resolution cameras, magnetic resonance 

scanners, geo-scanners, etc.) to the platform where signal 

reconstruction is performed. 

The mathematical foundation that has led to a true 

"explosion" of publications and papers in the past decade lies 

in the premise that the process of data acquisition can be 

represented by a system of linear equations Eq. (1), (Foucart & 

Rauhut, 2013): 

Axy                                                                             (1) 

where from MCy  the labeled vector of measured data (M -

dimensional column), with NCx  (N-dimensional column) 

vector of input data from the set of real numbers, and the 

matrix NMCA   the operator of the linear measurement 

process, where M<N. The input signal is practically sampled at 

a smaller number of samples than the length of the input 

signal, resulting in an underdetermined system of linear 

equations (a greater number of unknowns – N than the number 

of equations – M). Assuming that the signal possesses the 

property of sparsity in the domain Ψ (which could be the 

domain of Fourier, DCT, Haar wavelet transform, etc.) and if 

the operator A has the corresponding properties, then it is 

possible to reconstruct the signal x from the vector y. For a 

more concise presentation of the theory, which can be found in 

numerous literature sources, we summarize the procedure step 

by step: 
Sparsity of the signal: Let x represent an N×1 column 

vector of the input analog signal discretized in time, as 

previously mentioned. For a given orthonormal basis matrix 

ψRNxN, whose columns represent the basis elementary 

vectors  N

ii 1
  x can be represented as a linear combination of 

basis vectors Eq. (2):  






N

i

iix
1

                                                                    (2) 

or more compactly, x=Ψα, where α represents an N×1 column 

vector of coefficients. These coefficients, in fact, represent the 

inner product of the vector x and the elementary basis vectors 

i , xi  , x
T

ii   , where (Т) signifies the transpose 

operation. If the basis-domain Ψ mapping the input vector x to 

a vector with a small number, let's say K, of non-zero 

coefficients, then it can be written as  






K

i

nn ii
x

1

                                                                 (3) 

the sparse version of the input vector, where ni are the indices 

of coefficients and basis vectors (referred to in literature as 

dictionary atoms Ψ) corresponding to K non-zero coefficients. 

Then α, a dimension N×1, column vector with only K non-zero 

coefficients, denoted as K
0

 , where 
p

  denotes the lp-

norm, or 

p

i

p

ip
xx

1














                                                            (4) 

Calculating the norm of a specific vector or matrix 

represents different ways of measuring their length or 

magnitude (Patel et al., 2013). In the case where p→0, the 

practically obtained l0-norm, namely the previously mentioned 
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number of non-zero coefficients of the vector, is obtained. 

Real signals cannot practically be considered sparse in any 

domain, but the vast majority possess compressive, 

compressible properties – meaning the property of being 

compressible or compressive signals. Compressibility implies 

that if the amplitudes of signal coefficients are arranged in a 

decreasing order 
)()2()1( ... N  , results in their 

exponential decay 

s

n
nC  .                                                                     (5) 

where 
)(n

  is the nth largest coefficient value, s≥1, C 

constant. In that case, the error signal, or the difference 
between the signal obtained by a linear combination of basis 

vectors and the input signal, would also exponentially decay 

with the increase in the number of used coefficients 



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
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


 2

1

2

ss

L CKxx                                                     (6) 

In other words, a small number of basic elementary 

vectors from Ψ can enable a precise approximation of x. Such 

approximation is known as nonlinear approximation. 

Incoherence: The coefficients αi from Eq. (2) are not 

directly measured in compressive sampling. Instead, the 

measurement of M (M<<N) projections of vector x is 

performed using a collection of vectors  M

ii 1
 , arranged as 

rows of an arbitrary permutation matrix Φ, dimension M×N, 

resulting in a measured column vector y, dimension M×1, 

whose elements are jj xy , . The measurement process 

can now be written as 

 Axy                                                     (7) 

where A represents the measurement or observation matrix 

mentioned in Eq. (1). Reconstruction refers to the recovery of 

the sparse version of the input vector x, the vector α from 

which, by the inverse transformation Ψ⁻ ¹, an approximation 

of the input vector is obtained. An illustrative representation of 

the reconstruction, or obtaining the measured vector, is shown 

in (Fig. 2). In this case, the matrix Ψ is pictorially represented 

as a transformational matrix operator coefficients of the 

discrete cosine transformation (DCT), commonly used for 

image processing and compression. 

x= x

y Φ Ψ α 
 

Figure 2. Illustrated representation of obtaining the 

measurement vector from compressively sampled signal. 

For the algorithm to be successful, it is necessary for A to 

possess two fundamental properties: 

The property of restricted isometry: known in the 

literature as RIP (Restricted Isometry Property). For a matrix 

A to be said to possess the property of restricted isometry of 

order K, with constants )1,0(k , it must satisfy 

2

2

2

2

2

2
)1()1( vAvv KK                                    (8) 

for any vector v whose Kv 
0

. An equivalent description 

would be that all subsets of K columns (vectors) taken from A 

are nearly orthogonal, implying that K-sparse vectors cannot 

lie in the null space of the matrix A. When RIP holds, A 

approximately preserves the Euclidean length (l2-norm) of K-

sparse vectors, i.e., 

2

2212

2

221

2

2212 )1()1( vvAvAvvv KK     (9) 

applies to all K-sparse vectors 1v  and 2v . The related 

condition known as incoherence requires that the rows of Ψ 

cannot sparsely represent the columns of Ψ and vice versa. 

Matrix incoherence: As a measure of mutual 

independence of constituent vectors for matrices Φ and Ψ is 

defined as 

jiN  ,max),(  ,  Nji  ,1                   (10) 

The number μ represents the measure of similarity 

between two vectors of the matrix А=ΦΨ and ranges between 

1 and N . The matrix A is said to be incoherent if μ is a very 

small number. Incoherence holds for various pairs of matrices, 

such as delta impulses and the Fourier basis, and with high 

probability between any matrix and a random matrix with 

Gaussian or Bernoulli distribution. 

Reconstruction 

As mentioned, algorithms for reconstructing 

compressively acquired signals involve finding a sparse 

approximation of the original input signal from compressive 

measurements, in an appropriate basis, framework, or 

dictionary. Research and development of various algorithms 

are motivated by reducing the number of measurements, noise 

resilience, speed, complexity, reliability, and credibility, etc. 

Algorithms are generally classified into six approaches for 

reconstruction, as shown in (Fig. 3), (Rani & Sushma, 2018). 

The convex optimization approach involves finding the 

solution to formulation Eq. (1) using linear programming 

techniques. Some of the popular ones include the simplex 

algorithm, interior-point algorithm, Bregman algorithm, 

gradient projection for sparse representation (GPSR), fixed-

point continuation, and others. These represent a global 

optimization approach. 
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Figure 3. Approaches to compressive sensing reconstruction. 

The approach using greedy algorithms, unlike convex 

ones, is an iterative step-by-step approach. During each 

iteration, the solution is updated by selecting only the columns 

of the reconstruction matrix that are highly correlated with the 

measurements. The selected columns are called atoms. Once 

selected, atoms are not used in subsequent algorithm steps, 

greatly reducing its computational complexity. The solution is 

obtained by iteratively choosing the best (closest to the 

original vector) solution in a "greedy" manner ("only the best 

is taken"), hence the name. These fall into the category of fast 

algorithms, but require some prior knowledge of the signal's 

sparsity measure. These algorithms can be further classified 

into two categories: serial and parallel. 

The thresholding approach involves algorithms that work 

with K atoms from the reconstruction matrix, while also 

employing a certain thresholding sensitivity definition that sets 

all values below the threshold to zero, thereby reducing the 

impact of noise. The rest of the algorithm is very similar to the 

previously mentioned group. Some examples include Iterative 

Hard Thresholding, Iterative Soft Thresholding, Approximate 

Message Passing, etc. 

Combinatorial approaches are primarily developed for 

finding sparse approximations during group testing, aiming to 

minimize the number of tests required to be conducted. They 

work on computing the minimum or mean values of 

measurements identified as constituent samples. 

Non-convex optimization approach fundamentally differs 

from convex ones in the type of norm used to solve the 

minimization problem, specifically referring to norms located 

between l0 and l1. Examples of algorithms using this approach 

include solving focal undetermined system solutions and 

iteratively re-weighted least squares. 

Bayesian approach is used for non-deterministic 

(stochastic) signals belonging to some probability distribution. 

Sparse Bayesian learning and others are known. 

Orthogonal Matching Pursuit - OMP 

Within the group of serial greedy algorithms, orthogonal 

matching pursuit (OMP) is included. Each iteration of these 

algorithms selects only one atom and calculates the 

corresponding non-zero element of the solution vector. The 

basic steps of these algorithms are depicted in the (Fig. 4), and 

the difference lies only in the solution update step: 

Initialization: The residual vector r, dimension M×1, 

together with the measurement vector y, are initialized to 

initial values. The solution, sparse vector α, dimension N×1, 

and the index set Λ, dimension M×1, are dimensioned as zero 

vectors, and the initial dictionary matrix D, which will be 

established during iterations, is initialized as a zero matrix. 

The cycle counter i is set to the value 1. 

Atom search: In this step, the column of the 

reconstruction matrix A that has the maximum correlation with 

the residual vector r is found. The position of this atom is 

updated in the index set Λ. 

Update of the sparse solution vector: Depending on the 

selected atoms, the solution set αi is updated and the 

approximation of the measurement yi is found. The way the 

solution is updated is the step that distinguishes algorithms of 

this classification. In the OMP algorithm, this is the well-

known least squares method. 

Update of the residual: The new residual is calculated 

by subtracting the obtained approximation yi (product of Diαi) 

from the measurement vector y. These steps are repeated up to 

the desired sparsity level (K times) or until a desired residual 

value (less than some level ε≥ 0) is reached. 

START

Initialization of residium, 
index set and dictionary

Correlation calculation of 
A and residium r

i  <  k
or

 ri  <  ε 

Search for maximum and 
its index

Index Set update

Sparse solution αi 
update

Residium ri  update

END

i = i + 1Atom search

 

Figure 4. Algorithm for orthogonal matching pursuit. 

For a clearer understanding of the principle of the 

orthogonal matching pursuit process, let's consider an 

example. The assumption is that for a given system 

y = A   
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the measurement vector is known 











25.0

65.1
y  and the matrix 















16.0707.0

08.0707.0
A  and it is necessary to find α, which 

must be of dimension 3×1, and at the initialization phase, it is 

set as a zero-column vector 



















0

0

0

  whose coefficients are 

gradually updated during the steps. 

We start from the premise that we consider the compressive 

matrix as a collection of basic column vectors or atoms: 

 321
16.0707.0

08.0707.0
bbbA 












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









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

















1

0
,
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,
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707.0
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If we denote that 
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







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







3

2

1







  then A  is 

  ybbbbbb 

















 332211

3

2

1

321 







  

From this expression, it can be seen that the contribution 

of each atom from A depends on the values of the coefficient 

of the (un)sparse vector α. Thus, at the initial moment, it is 

necessary to find the atom that contributes the most to y. This 

process, for now, requires as many iterations as there are 

atoms. 

1 step: The contribution of each atom is calculated by 

measuring the magnitude of its projection onto the 

measurement vector, i.e., by inner product. 

34.165.1707.0)25.0(70.0

25.0

65.1

707.0

707.0
,1
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
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



yb

 

17.1
25.0
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6.0

8.0
,2 


















yb  and 
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65.1

1

0
,3 




















yb  

It can be seen that the largest contribution is from atom 

1b , and therefore this vector is taken for updating the selected 

basis, whose coefficient is   34.11    (the coefficient of 

the most influential base vector in obtaining the final solution). 

The contribution of each vector, of course, can be 

calculated in one step as 



















25.0

17.1

34.1

yAT
. The residual vector 

is calculated as 


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

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
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




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When the first vector is selected, the reconstruction 

matrix is updated and filled in a way that it adopts this vector 

as its new basis 









707.0

707.0
)1( 1bD . 

2 step: Now, the calculation of contributions continues 

by searching for maximum correlations for the remaining 

atoms from matrix А ( 2b  and 3b ), but in relation to the 

residue vector r. In one step, we calculate contributions with 

  







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
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7.0
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10

6.08.0
32 rbb
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From this, it is concluded that the vector 2b  has the largest 

contribution in absolute value, based on which we choose this   

vector to add to the new base. In this second iteration, the new 

matrix is  21)2( bbD   and how close we are to the solution 

is calculated through least squares (Strang, 2016) 

2
)2()2(min yD  . 

It is known that this problem in linear algebra can be solved 

with: 

yD , 

where D  denotes the pseudo-inverse matrix of matrix D, for 

which TT DDDD 1)(   . Now is 







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7143.07143.0

8082.06062.0
)2(D  

(in MATLAB, the command is pinv), so at this moment 

(iteration) 
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The new residual will be  
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Considering that we have reached orthogonal overlap (the 

residual between the measurement vector and the 

approximation is a zero vector), and knowing that the 

dimension of the vector is 3×1, we add as the last  

element 0, so 



















0

1

2.1

 . 

When dealing with larger matrices, the process is iteratively 

repeated. 

EXPERIMENTAL 

Image processing using compressive sensing technique 

Acquisition 



 

MATHEMATICS, COMPUTER SCIENCE AND MECHANICS 

One of the first devices that practically demonstrated the 

application of compressive sensing technique is the Rice 

single-pixel camera (SPC), (Patel et al., 2013). This camera 

essentially measures the inner product between an N-pixel 

sampled incident light beam from the scene and a set of N-

pixel test functions, as shown in (Fig. 5). 

,
A/D 

Photodetector

Digital micromirror 
array

Relay lense

 

Figure 5. The operating principle of the Rice single-pixel 

camera, (Uzeler et al., 2013). 

Such architecture utilizes only one photodetector to 

capture the scene. A digital micromirror device (DMD) array 

is used for the function of a pseudo-random binary sequence. 

The light beam is projected onto this array, and the beam 

intensity is measured with a photodetector. The orientations of 

the mirrors in the array can be rapidly changed, allowing for a 

series of different pseudo-random projections to be measured 

in a relatively short time. Reconstruction is then performed 

using some of the mentioned algorithms. 

One of the main limitations of this architecture is that it 

requires the camera to focus on the object of interest until a 

sufficient number of measurements are collected, which can be 

restrictive for certain applications. Some of the other main 

architectures for compressive image sensing can be found in 

(Baraniuk et al., 2017). 

Results of Reconstruction 

For the quality of the reconstruction, the choice of the 

right transform domain in which the sparse image is observed 

is essential, i.e., the choice of the sensing matrix, as indicated 

by expressions Eq. (8) and Eq. (10). The Fourier domain is 

often used for the selection of the basis, especially for signals 

sparse in the frequency domain, followed by the Discrete 

Cosine Transform domain, Wavelet Transform domain (of 

various classes), etc. For the presentation of results in this 

work, two domains were comparatively used: Fourier (F) and 

Discrete Cosine (DCT). Considering that one of the 

motivations for the work was the use of low-power cameras 

for terrain surveillance, an initial landscape image of 

dimensions 256×256 was used, followed by faces in the 

second part (known test image "Lena"), and a drawing image 

(parrot) of similar dimensions, as shown in (Fig. 6). 

The platform used for simulation is based on an i7 

processor with two cores at 2.8 GHz and 8 GB of RAM. The 

compressive sampling simulation is implemented by selecting 

the ratio of the measurement vector length to the sample size 

(M/N), i.e., how many pixel samples are taken for 

reconstruction. Initially, the Fourier matrix operator (identity, 

normalized) was chosen as the transformation operator. 

Variants with 60, 50, 40 percent of sampled pixels are shown 

in (Fig. 7) along with their corresponding reconstructions. 

 

Figure 5. Original images used in the study: a) Lake b) Lena 

c) Parrot. 

 

Figure 6. Reconstruction results by sparsifying in the Fourier 

domain with various M/N ratios. 

For the sampled segment, column vectors of the two-

dimensional image matrix were taken as samples, except in 

case (v) where, for clarity, the sampled vector was taken as a 

square block segment. In these cases, a relatively long 

reconstruction time was observed (several tens of minutes and 

over an hour for larger samples), primarily due to the large 

operator matrix and associated computational operations. 

A better characterization of image sparsity was sought in 

the domain of discrete cosine transformation, considering that 

spectral analysis of one segment revealed the presence of a 

larger number of frequency components, as shown in (Fig. 8). 

 

Figure 7. The spectral power density of one segment of the 

original image. 
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Even with just the replacement of the transformation 

matrix, a certain improvement was observed, as shown in 

(Fig.9). 

 

Figure 8. A comparative display of reconstruction with 60%, 

50%, and 40% of points, in different sparse domains: top row 

DCT, bottom row FFT. 

The reconstruction times, however, remained significant 

in terms of the required speed. For further improvements, it 

was necessary to enhance the reconstruction time, which 

initiated further exploration of possible solutions. One 

approach was to reduce the dimensions of the transformation 

matrix. 

Algorithm Improvements 

The proposed solutions to the problem, in terms of 

reducing the dimension of the transformation matrix, were 

investigated in (Gan, 2007) and (Sermwuthisarn & Parichat, 

2009). In both cases, acquisition was considered block by 

block (dimension n×n pixels), but they differ in the approach 

to reconstruction. While in the first case, a Wiener filter, 

projection onto a convex set, and hard thresholding were used 

as reconstruction algorithms, in the second case, the approach 

of searching for orthogonal matches was used, called block-

based OMP (Block-based Orthogonal Matching Pursuit). In 

this work, the latter method was used, only applied to color 

images and with some differences in parameterization. 

When using block segments of the image, sized n×n 

pixels, the dimensions of the measurement matrix are 

expanded to n2×n2. For blocks of 64×64, the matrix is of size 

4096×4096, for 16×16 blocks the matrix size is 256×256, 

while for 8×8 blocks the matrix size is 64×64. 

Comparative reconstruction results by segmentation, with 

achieved reconstruction times, are shown in (Table 1), while 

the obtained appearances are shown in (Fig. 10). 

Segmentation is implemented without overlapping 

between segments, but for further analysis, it can also be 

considered with overlap. Regarding the presented data in 

(Sermwuthisarn & Parichat, 2009), better times have been 

achieved, especially considering that in this work, the 

reconstruction of RGB color images compared to the 

monochromatic (grayscale) image used in the reference 

(dimensions are roughly similar), considering the triple pass 

through the algorithm (for each of the R, G, and B two-

dimensional matrices individually). The table provides an 

approximate block size because to ensure proper segmentation, 

images are extended by a sufficient number of pixels divisible 

by the square root of the total number of segments. 

 

Figure 9. Reconstructions with 30% samples obtained by 

segmenting into segments: a) 4 b) 16 c) 64 d) 256 e) 

improvements of 256 segments, 3 times larger K f) 

improvements of 256 segments, 6 times larger K. 

Table 1. Reconstruction time for different segment sizes and 

sparsity levels. 

Point 

image 

Block 

Size 

(n×n) 

M/N 

Ratio 
Segments 

Sparsity 

(K) 

Reconst

ruction 

Time 

a) 128×128 30 4 M/6 
Several 

hours 

b) 64×64 30 16 M/6 51.95 s 

c) 32×32 30 64 M/6 10.58 s 

d) 8×8 30 256 M/6 1.79 s 

A better assessment of reconstruction quality is 

considered when it comes to face recognition. An example 

taken is the test image "Lena," which is often used in the 

references provided. Segmentation was performed on 256 

blocks with different sparsity levels, (Fig. 11).  

 

Figure 10. Image face reconstruction: in the first column with 

sparsity degree M/6, in the second M/2, in the third column M, 

the original image is framed on the right. 
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By observing, one can directly assess the recognizability 

of the face compared to the original (for example, the author 

has personally highlighted some of the reconstruction results 

with a red line). In step (Orthogonal Matching Pursuit – OMP) 

of the residue update, it has already been stated that the 

algorithm terminates after K iterations (sparsity level, thus 

directly affecting the reconstruction speed), or until the 

residual vector magnitude is reduced to some minimum match 

(ε≥0). The value of this minimum can be viewed as a number 

indicating the level of approximation and solution match, and 

for ε=0, the match is perfect. 

In (Fig. 12), we notice that the level of matching actually 

determines the level of detail in the image, but also that details 

are not decisive, and sometimes a lower level of detail may be 

more useful for drawing conclusions about the necessary 

information from the image (whether it's a certain person or 

not, which person or characteristic it is). The reconstruction 

speed, logically, doubled in the case of ε=550 compared to the 

case with ε=0. When ε=0, we also notice small errors in the 

reconstruction (blue square at the far right and two yellow 

squares at the top and bottom). Errors appear in areas of the 

same color shades and when a complete level of matching is 

defined. The algorithm corrects itself by taking values greater 

thanzero. 

 

Figure 11. Reconstruction for different levels of matching, 

sequentially ε = 0 for 4.53s, ε = 250 for 2.45s, and ε = 550 for 

2.19s. 

The question of assessing the quality of reconstruction in 

the current analysis is based on subjective evaluation. The 

Peak-Signal-to-Noise-Ratio (PSNR) is one of the commonly 

used parameters for objectively measuring the quality of 

reconstruction in image codec (encoder/decoder) for image 

compression. PSNR is actually an approximation of the eye's 

perception of reconstruction quality. PSNR is most easily 

defined through the Mean Squared Error (MSE): for a given 

monochromatic image i and its noise-degraded approximation 

K, it is 
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where MAXI is the maximum possible pixel value in the image. 

In our case, images with 8-bit pixel values were used, so the 

maximum value is 255. For color images with three RGB 

values per pixel, as used in the study, the same definition of 

the PSNR parameter is taken, except that MSE is calculated as 

the sum of sums for each color divided by the size of the 

image (dimensions m×n) and multiplied by 3. A closer 

criterion to human eye perception is when this value is 

calculated on the luminance channel (Y channel of the YCbCr 

image format), as shown in (Fig. 13). The acceptable value of 

this parameter for lossy compression, according to the source 

(Thomos, et al., 2006), is from 20 to 25 dB. 

 

Figure 12. Peak Signal-to-Noise Ratio (PSNR) values for 

different types of images. 

Another method considered here for quality assessment is 

measuring the Structural Similarity Index (SSIM) (Wang et al., 

2004). This parameter describes the measure of similarity 

between two images, i.e., the perception of the resulting image 

change in its structure, and falls into the group of parameters 

for which complete referencing of the obtained reconstruction 

result with the original is necessary. Without delving into the 

details of the mathematical model, this parameter was used 

here as a complementary parameter to the traditional approach 

of measuring the peak signal-to-noise ratio. The concept of 

structural information in the image is related to the idea that 

pixels have strong mutual dependence when spatially close, 

and this dependency carries important information about the 

structure of objects in the visual scene (Thomos, et al., 2006). 

The value of the index ranges from -1 to 1 and is a decimal 

value, where 1 represents an identical set of data (perfect 

similarity), while 0 represents no structural similarity at all. 

The obtained index values for all three types of images used 

are shown in (Fig. 14). 

In (Fig. 14), the change of Structural Similarity Index 

(SSIM) with the percentage of samples (M/N) is shown for 

three images: Lena, Parrot, and Nature. SSIM is a measure that 

describes how similar two images are in terms of their 
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structure, where a value of 1 indicates perfect similarity and a 

value of 0 means no structural similarity. 

The X-axis represents the percentage of samples used for 

image reconstruction, ranging from 15% to 60%. The Y-axis 

shows the SSIM value, ranging from 0.4 to 0.85. Three lines 

on the graph represent three different images: Lena (marked 

with asterisks), Parrot (marked with plus signs), and Nature 

(marked with circles). 

For the Lena image, SSIM starts around 0.55 at 15% of 

samples and gradually increases to approximately 0.85 at 60% 

of samples. This indicates that the reconstruction of the Lena 

image is very good, with a high level of similarity to the 

original. The Parrot image shows lower initial SSIM values, 

starting around 0.42 at 15% of samples and reaching about 0.7 

at 60% of samples, indicating moderate similarity to the 

original image. The Nature image has an initial SSIM of 

around 0.46 at 15% of samples, gradually increasing to about 

0.75 at 60% of samples, showing good similarity to the 

original but not as high as the Lena image. 

Figure 14 shows that all SSIM indices increase with 

higher percentages of samples, indicating improved image 

reconstruction quality with increased sample usage. The Lena 

image exhibits the highest reconstruction quality, while the 

Parrot image is the most challenging to reconstruct. The 

Nature image falls somewhere in between in terms of 

reconstruction quality. These results demonstrate the 

effectiveness of the reconstruction algorithm used, as even at 

higher compression levels, the reconstructed images maintain 

acceptable levels of structural similarity to the originals. 

 

Figure 13. Values of the Structural Similarity Index for 

different types of images. 

Based on the images, we can observe how the Peak 

Signal-to-Noise Ratio (PSNR) and Structural Similarity Index 

(SSIM) increase with the growth of sample percentage (M/N). 

From the presented results, it can be concluded that even under 

significant compression, the chosen algorithm maintains 

reconstructed approximations above the commonly acceptable 

threshold of 20dB PSNR. Additionally, the obtained SSIM 

values consistently align with previous findings (higher SSIM 

indicating a higher signal-to-noise ratio in the image). These 

parameters are utilized, for instance, in pattern recognition in 

images, faces, objects, etc. 

CONCLUSION 

The concept of compressive image sensing is presented 

in the paper, along with the basic conditions for its application, 

current approaches to reconstructing such signals, 

mathematical formulation with an intuitive example of 

orthogonal matching pursuit algorithm, and the method of 

image acquisition with compressive sampling. Furthermore, 

results obtained based on the applied algorithm are presented 

using three structurally different images: faces, natural 

landscapes, and drawings. 

It can be concluded that acceptable results are achieved 

for a compression level of around 25-30% of samples (over 20 

dB PSNR), and better structural similarity is obtained for faces 

compared to images of natural landscapes and drawings, which 

is important from the perspective of automated recognition. 

Input vectors have shown better sparsity properties in the 

Discrete Cosine Transform (DCT) domain compared to the 

Fourier domain (FFT). Some references claim that the 

compression level can be lowered to 4-10% using atoms from 

the Wavelet Transform dictionary, with a cautious note that 

the orthogonality of the matrix in this domain is not 

unequivocally determined and must be carefully considered 

during its design. 

The method of forming the input vector also showed its 

impact on the algorithm's performance, primarily in terms of 

reconstruction time for the desired quality. Thus, the 

reconstruction results in this work are very comparable to the 

results in (Sermwuthisarn & Parichat, 2009). A wide range of 

possibilities remains open for the application of more 

advanced variants of this method, as well as improvements to 

the algorithm itself in some other sense. One of the possible 

improvements is presented in (Safavi, 2016). The relevance of 

the topic today is demonstrated by recent algorithm 

enhancements achieved (Zhao et al., 2019). 

By employing compressive sensing/selecting methods, it 

is possible to form a signal at the end sensor points using 

simpler, cheaper, and low-power devices, which will enable 

satisfactory image reconstruction at the destination in the 

transmission system. This avoids the use of expensive 

hardware with high power consumption and provides an 

advantage over classical image compression methods. A small 

amount of data acquired at the end points lessens the burden 

on the transmission network and the connection of a large 

number of sensors to it. 
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