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ABSTRACT 

Overhydration (OH) represents a significant challenge for hemodialysis patients, significantly affecting the 

outcomes of their treatment. Accurate prediction and management of overhydration are key to optimizing therapy 

and improving patients' quality of life. The aim of this paper is to present a federated learning (FL)-based 

approach designed to predict overhydration in hemodialysis patients, using a dataset comprising different clinical 

and bioimpedance parameters. Federated learning enables collaborative learning from multiple data sources while 

preserving the privacy and security of individual patient data. Research results show that federated learning has 

the potential as an effective tool for predictive modeling in clinical settings. The developed models achieve high 

performance in overhydration estimation, with metrics confirming their accuracy and reliability.  The proposed 

approach achieved a R² of 0.9999999, a MAE of 0.00018 and an MSE of 0.0031, demonstrating its predictive 

strength and practical applicability. This study highlights the advantages of federated learning in using distributed 

data to advance predictive capabilities in healthcare. By overcoming challenges related to privacy and data 

security, the approach presented in this paper opens up opportunities for more personalized and accurate 

prognoses, potentially improving decision-making and patient care in hemodialysis. 
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INTRODUCTION 

Hemodialysis is a procedure performed in patients with 

chronic renal failure which aims to alter blood composition by 

removing, water, electrolytes, and waste materials in a patient 

with kidney failure. The accumulation of fluids and harmful 

wastes occurs in these patients since the kidneys are unable to 

filter blood sufficiently. Overhydration permits the body's 

threatening processes such as elevated blood pressure, edema, 

breathing problems, and cardiovascular complications. The 

blood of the patient goes through a dialysis machine (artificial 

kidney) during Hemodialysis, where excess volumes of fluids 

and unwanted substances are eliminated and electrolytes are 

supplemented. A good fluid balance from one hemodialysis 

session to the next is essential in promoting good health and 

reducing the incidence of complications. To avoid 

overexerting the body, many patients are told to limit the fluids 

and salt they consume. 

Artificial Intelligence gives new ways to improve and 

solve problems in hemodialysis, especially in fluid overload 

predictions. The neural network for predicting overhydration 

was based on parameters like blood pressure, bioimpedance, 

extracellular water, intracellular water, and total body water 

(Djordjevic et al., 2023). In addition, a patent has been 

developed in which multiple machine learning models were 
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trained and selected for the best performance to predict 

overhydration in individual patients (Mladenović et al., 2024). 

Various studies have also documented the use of hybrid 

machine learning models to enhance overhydration prediction 

accuracy by combining the best features of different 

algorithms for better performance (Djordjevic et al., in press). 

This study will utilize the federated learning model to 

predict overhydration in hemodialysis patients. It allows 

centralized machine learning model training, where the data 

remains securely stored on the local device, and only model 

updates are shared, which helps protect patient privacy and 

data security. Unlike conventional methods, this approach does 

not require centralized access to patient datasets, thus reducing 

the risk of breaches and ethical concerns. Federated learning 

can train models collaboratively from several institutions or 

datasets to create a generalizable model that cannot 

compromise the privacy of individual patients. This 

methodology has particular appeal in healthcare because data 

sensitivity and diversity are important in building correct 

predictive models. 

The paper is organized as follows. The theoretical part 

provides an overview of overhydration in hemodialysis 

patients, discussing its clinical implications and the importance 

of accurate prediction. Additionally, it introduces federated 

learning and its applications in healthcare, emphasizing its 

potential for improving predictive modeling while ensuring 

data privacy. The experimental section describes the dataset 

used in this study, detailing the clinical and bioimpedance 
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parameters considered, followed by an explanation of the 

materials and methods employed in model development and 

evaluation. The numerical results section presents the 

performance metrics of the proposed federated learning model, 

highlighting its effectiveness in predicting overhydration. 

Finally, the paper concludes with a discussion of key findings, 

potential implications, and future research directions. The 

work also includes an acknowledgments section, followed by a 

list of references. 

THEORETICAL PART 

Overhydration in hemodialysis patients 

Optimal fluid volume control in dialysis patients is an 

essential component of dialysis adequacy, however, the 

amplitude of volume fluctuation is still a very difficult clinical 

situation (Perl et al., 2017). Although restoring salt and water 

homeostasis in hemodialysis patients has been linked to 

improved cardiovascular outcomes, recent studies suggest that 

the intensity or aggressiveness of fluid removal during 

standard thrice-weekly dialysis sessions may cause excessive 

hemodynamic stress and potential organ damage, potentially 

leading to long-term adverse effects (McIntyre, 2010; London, 

2011). Chronic fluid volume overload affects 27-46% of 

hemodialysis patients and is a significant risk factor for 

cardiovascular events and death (Dekker et al., 2017; Zoccali 

et al., 2017; Loutradis et al., 2021). Overhydration causes 

hypotensive symptoms (muscle cramps, yawning, nausea, 

vomiting, dizziness, and syncope), requiring optimal fluid 

volume control for cardiovascular stress, quality of life, and 

survival. Optimal fluid volume is dry weight, achieved through 

gradual change with minimal underhydration or overhydration 

symptoms (Sinha & Agarwal, 2009). 

Total body water (TBW) changes are examined during 

short-term (≤ 10 days) weight loss or gain using the dilution 

method with deuterium or heavy oxygen (Sagayama et al., 

2019; Kondo et al., 2018; Sagayama et al, 2014). The dilution 

method is ineffective for monitoring fluid volume changes in 

hemodialysis patients. Alternative methods like multi-

frequency bioelectrical impedance analysis (MF-BIA) or 

bioelectrical impedance spectroscopy (BIS) can estimate fluid 

volume status, determine body composition, and track changes 

over time (Moissl et al., 2013; Buchholz et al., 2004). MF-

BIA- or BIS-guided fluid volume management lowers blood 

pressure (BP) and post-dialysis weight, but it does not appear 

to increase patient survival (Huan-Sheng et al., 2016). As a 

result, fluid volume overload cannot be attributed only to 

excess extracellular water (ECW) caused by oral salt and water 

consumption, which manifests as an inter-dialysis weight 

increase. 

There is increasing evidence that patients receiving 

hemodialysis (HD) who have a higher body mass index (BMI) 

have a higher chance of surviving; this phenomenon has been 

dubbed the "obesity paradox." (Doshi et al., 2016). BMI, while 

correlated with body fat percentage, doesn't differentiate 

between body fat and muscle mass (Yang et al., 2023). Excess 

adiposity in patients undergoing hemodialysis can lead to 

adverse outcomes, as increased adipose tissue and reduced 

muscle mass may be associated with adverse outcomes, 

despite minimal or insignificant changes in BMI (Ishimura et 

al., 2022; Donini et al., 2022). Therefore, evaluating body 

composition distribution is crucial for hemodialysis patients. 

The main finding of Rymarz et al. (2018) was that 

patients receiving hemodialysis had a worse survival 

probability when their lean tissue index (LTI) decreased. 

Dialysis patients with LTI and FTI in the 10th to 90th 

percentile (of the age- and sex-matched healthy population) 

had the best survival rate, according to Marcelli et al. (2015). 

Conversely, a higher mortality rate was associated with either 

low FTI, low LTI, or a combination of the two. 

Based on all mentioned parameters such as total body 

water (TBW), extracellular water (ECW), muscle mass indices 

(LTI), body composition, blood pressure (BP), and other 

relevant variables, the aim of this work is to use the Federated 

learning (FL) to predict the state of overhydration in 

hemodialysis patients. 

Federated Learning in Healthcare 

With the rise of big data, the rapid development of 

machine learning, and increasing global connectivity, the 

collaborative training of machine models between different 

organizations and countries has never been at such a high level 

(Sheller et al., 2020). The biggest concern in the context of 

collaborative training in healthcare is related to data privacy 

issues, which limit data sharing and clinical application of 

technologically possible solutions (He et al., 2019). This is 

why there is growing interest in privacy-preserving approaches 

such as federated learning (FL), blockchain technology, and 

generative adversarial networks (McMahan et al., 2017). FL is 

a distributed machine learning framework introduced by 

Google in 2016 that enables multi-party collaboration while 

preserving data privacy (Sadilek et al., 2021). This approach is 

becoming increasingly popular in the medical industry as an 

attractive alternative to traditional centralized training 

methods, as it improves privacy protection. 

In recent years, the notion of federated learning (FL) has 

been presented for developing intelligent and privacy-

enhancing Internet of Things (IoT) systems. In theory, FL is a 

distributed collaborative AI method that enables data training 

by coordinating several devices with a central server without 

sharing actual datasets (Konečný et al., 2016). For instance, FL 

has supported the development of smart healthcare services by 

allowing machine learning (ML) models to be built without 

requiring the sharing of patient data among multiple medical 

institutions (Sheller et al., 2019). In this way, FL streamlines 



 

MATHEMATICS, COMPUTER SCIENCE AND MECHANICS 

healthcare records management by reducing the need for 

exchange among hospitals, enhancing collaboration, and 

promoting patient diagnosis and treatment without 

compromising user privacy. Finally, FL can be utilized in real-

time population monitoring, enabling the early identification 

of disease outbreaks (Zhang et al., 2024). 

Federated learning (FL) enhances hemodialysis treatment 

by facilitating collaborative machine learning model 

development across medical centers, ensuring patient data 

privacy and enabling more accurate and personalized 

treatments. Federated learning (FL) models were trained to 

predict acute kidney injury (AKI) in COVID-19 patients at 

three and seven days. The study demonstrated that FL 

outperformed locally available data, particularly in the 

smallest dataset (Jaladanki et al., 2021). Weishen et al. (2024) 

present an adaptive FL framework for handling data 

distribution discrepancies across different sites in FL settings. 

The model demonstrated better quantitative performance on 

tasks of predicting the onset risk of sepsis and acute kidney 

injury (AKI) in critical care settings. Huang et al. (2023) 

developed a federated learning (FL) platform that allows the 

creation of a joint acute kidney injury (AKI) prediction model 

using data from five hospitals, using different machine models 

such as XGBoost, Random Forest, and neural networks. The 

models were trained locally at each hospital center, and then 

their results were aggregated to improve prediction 

performance, without the need to share raw data between 

hospitals. 

Federated learning in the healthcare sector is a new 

practical tool that enables effective collaboration between 

different hospitals in the development of generalized medical 

artificial intelligence (Shiri et al., 2023). Federated learning 

solves an important data privacy barrier in the global 

deployment of medical artificial intelligence by enabling rapid 

deployment of models while private data remains securely 

stored in local hospitals (Loftus et al., 2022; Nguyen et al., 

2022). 

EXPERIMENTAL 

Experimental data  

The data used in this study were obtained from the 

University Children's Hospital in Tiršova, focusing on 

pediatric patients aged 0 to 16 during May 2022. The dataset 

comprises n=69 numerical medical features that serve as 

inputs and have a direct impact on the output variable, 

representing overhydration in liters (OH [L]). 

Before clients start training local models, all data goes 

through a preprocessing phase. Data are collected from the 

hemodialysis process as well as from the Body Composition 

Monitor, which collects bioimpedance. The data are stored in 

databases for every hemodialysis treatment. Using Python, 

these datasets are transformed into a suitable form (.csv), 

extracting only necessary data and deleting duplicates. The 

datasets are scaled to a range of 0 to 1 to ensure consistency in 

model training. Missing values in the data are filled with mean 

attribute values to avoid problems in model training due to 

incomplete data. Preprocessing is implemented using Python 

libraries such as pandas and scikit-learn, which offer simple 

and efficient functionalities for data manipulation (Pedregosa 

et al., 2012). 

Materials and methods  

Federated learning lays the foundation for the 

development of collaborative machine learning models that 

balance the need for data privacy and achieve high prediction 

accuracy. The implementation of this approach requires the 

careful design of a system that enables effective 

communication and updating of the model at a global level. 

The server in federated learning plays a key role in 

aggregating the weights it receives from clients. It also 

maintains the global model (Konečny et al., 2016). Its primary 

function is to centralize knowledge generated on decentralized 

clients without accessing their local data, thereby ensuring data 

privacy. The aggregation process is often implemented 

asynchronously. Meaning that the server does not have to wait 

for all clients to send their weights before updating the global 

model (Li et al., 2019; Yang et al, 2019). This approach allows 

working in heterogeneous environments where clients may 

have different network capacities, resources, or connection 

stability. Such flexibility is crucial for real-world applications, 

such as healthcare systems, where data remains localized at the 

hospital or laboratory level. 

The Elastic Boosting algorithm (Djordjevic et al., in 

press) is used to train the model. It combines the advantages of 

Elastic Net and Gradient Boosting Regressor. Elastic Net 

provides robustness to redundant and interconnected features, 

while Gradient Boosting Regression enables more accurate 

modeling of nonlinear relationships (Hans, 2011; Natekin & 

Knoll, 2013). Local models are trained using cross-validation 

methods to minimize overfitting problems and achieve better 

generalization. 

After successful training, clients use the gRPC protocol 

for secure and efficient communication with the server (gRPC, 

2024). Clients send their model weights to the server as 

numeric vectors (McMahan et al., 2017). This approach 

minimizes data transmission over the network, further 

ensuring privacy. Each client is identified by a unique IP 

address, which enables tracking of each client's contribution to 

the global aggregation process. 

The server collects a sufficient number of weights from 

the clients. Once this is done, it performs aggregation and 

updates the global model. The updated model is then sent back 

to the clients, who perform fine-tuning to further adapt the 

model to their specific data. In asynchronous mode, the server 
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can perform aggregation as soon as it receives weights from a 

sufficient number of clients, even if some clients are 

unavailable. After aggregation, the global model is updated 

and saved in .pkl format to be available for later evaluation or 

replication of experiments. The server evaluates the global 

model’s performance on the test dataset using key metrics (Eq. 

1-3). These include mean absolute error (MAE), mean square 

error (MSE), and coefficient of determination (R²), which 

quantify improvements in prediction (Brentan et al., 2017; 

Chicco et al., 2021). These metrics are recorded in a log file 

for later analysis and monitoring of model performance. 
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The methodology is further presented with a graphical 

representation illustrating the key steps in the federated 

learning process, including client-server communication, 

weight aggregation, and global model updating (Figure 1.). 

 

Figure 1. Federated learning process. 

NUMERICAL RESULTS 

In this research, 70 medical parameters were collected 

during pediatric hemodialysis at the University Children's 

Hospital in Tiršova. These parameters are organized within an 

expanding database, which is continuously updated with new 

measurements every 15 minutes throughout each hemodialysis 

session. This approach ensures a detailed and dynamic 

representation of the patient’s health status. 

The implementation of the global model and the analysis 

of individual clients within distributed learning provided high 

performance in predicting output values based on input 

weights. Key results for four clients and an evaluation of the 

global model are presented in this section. 

The results of the analysis are presented graphically using 

a Violin diagram (Figure 2.), which illustrates the distribution 

of variable weights for each patient. The violin diagram allows 

the simultaneous display of central tendencies and variability 

of weights, providing intuitive insight into the significance of 

individual medical characteristics. The weight distribution 

varies among patients, which emphasizes the specifics of each 

individual case. For example, patients with a more stable 

distribution of weights show a more consistent influence of 

medical characteristics on prediction, while a wider 

distribution indicates greater variability in the importance of 

characteristics. 

 

Figure 2. Distribution of weights for each patient. The violin 

plot represents the density of weight values for each patient. 

The central horizontal line indicates the median weight, while 

the shape width reflects the data distribution. Wider sections 

indicate a higher concentration of values. 

For the first patient, the Violin plot indicates a narrow 

distribution of weights, reflecting a high degree of model 

stability. This information is supported by numerical results, 

where the coefficient of determination was R2=0.985, mean 

square error (MSE) 0.0141, and mean absolute error (MAE) 

0.092. 

In the second patient, the Violin plot reveals a slight 

asymmetry in the distribution of weights, indicating specific 

variables that dominate the prediction. Numerical results for 

this patient include R2=0.990R, MSE of 0.0197, and MAE of 

0.109, confirming the high accuracy of the model. 

The third patient shows a wider distribution of weights 

on the Violin plot, reflecting increased variability among 

significant features. This pattern is followed by a slightly 

lower R2=0.933, with an MSE of 0.0239 and an MAE of 

0.107, indicating challenges in fitting the model to this patient. 
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For the fourth patient, the Violin plot reveals the 

narrowest distribution of weights among the analyzed patients, 

indicating a stable contribution of key features. Numerical 

results support this interpretation with R2=0.942, MSE of 

0.0108, and MAE of 0.079, making this model the most 

accurate in terms of minimum error. 

At the global model level, the evaluation shows excellent 

accuracy, with R2 close to 1 (0.9999999), MSE of 0.00018, 

and MAE of 0.0031. These results confirm the successful 

integration of local models into a global framework, providing 

a high level of precision in the estimation of key medical 

parameters. 

Below are shown tabular results for four clients, as well 

as a global model (Table 1). This table includes metrics such 

as R² (coefficient of determination), MSE (mean squared 

error), and MAE (mean absolute error). A global model is used 

to aggregate information from all clients to obtain a unique set 

of weights that takes all data into account. 

Table 1. Performance metrics for individual clients and global 

model. Evaluation metrics for models trained on individual 

patient data and a global model. R² indicates model accuracy, 

while MSE and MAE measure prediction errors (lower values 

indicate better performance). The global model combines data 

from all patients for overall assessment. 

Model/Client R2 MSE MAE 

Patient 1 0.9846 0.0141 0.0920 

Patient 2 0.9898 0.0197 0.1088 

Patient 3 0.9325 0.0239 0.1074 

Patient 4 0.9422 0.0108 0.0789 

Global 0.9999 0.00018 0.0031 

The achieved results show the effectiveness of federated 

learning when applied to this type of task. Individual client 

models allow for high local accuracy, while the global model 

consolidates this information, providing almost perfect 

prediction. The Patient 3 client had a slightly weaker 

performance, which may be due to the specificity of this 

client's data or increased variability. 

Analysis of weight updates indicates that the model 

successfully integrates information from all local sources. The 

reduction of negative values through iterations suggests 

stabilization and convergence of the model, which is a key 

aspect of the distributed approach. 

In conclusion, the results confirm the potential of 

federated learning for accurate predictions while preserving 

client data privacy, which is essential in medical applications. 

CONCLUSION 

This study indicates the potential of federated learning 

(FL) as an innovative approach for the prediction of 

overhydration (OH) in hemodialysis patients. FL enables 

collaboration between different data sources without 

compromising patient privacy, making it particularly suitable 

for use in healthcare settings. The results show that FL models 

achieve a high level of accuracy and reliability, thus 

confirming their effectiveness in managing complex clinical 

data. 

The proposed method provides significant advantages, 

including preserving data security and enabling more 

personalized forecasts. This is particularly important in 

hemodialysis, where accurate monitoring and management of 

OH can significantly affect treatment outcomes and patient 

quality of life. Federated learning opens up new opportunities 

for implementing advanced technologies in health care, 

enabling better decision-making and improving therapeutic 

approaches. 

Despite its potential, the implementation of FL in 

healthcare systems presents several challenges. One major 

limitation is the high computational demand required for local 

model training, which may be a barrier for healthcare 

institutions with limited resources. Additionally, 

communication latency between distributed clients and the 

central server can impact model convergence speed, especially 

in real-time clinical applications. Another challenge is 

scalability-ensuring that FL frameworks can be effectively 

deployed across multiple hospitals with varying data 

infrastructures and regulatory requirements. Addressing these 

challenges requires optimization of communication protocols, 

efficient model compression techniques, and the development 

of standardized FL frameworks tailored to healthcare settings. 

For future research, integrating FL with advanced deep 

learning techniques, such as transformer-based models or 

federated reinforcement learning, could further enhance 

predictive accuracy and adaptability to diverse clinical 

conditions. Additionally, testing FL on larger and more 

heterogeneous datasets across multiple healthcare institutions 

would provide stronger empirical validation of its 

effectiveness. Exploring privacy-preserving techniques, such 

as differential privacy and homomorphic encryption, could 

further strengthen data security and regulatory compliance in 

real-world implementations. 

Overall, while FL holds great promise for predictive 

modeling in medicine, addressing its technical and 

infrastructural challenges will be essential for its widespread 

adoption and long-term success in healthcare applications. 
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