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ABSTRACT

Rapid technological progress and increasingly pressing needs for energy efficiency, safety, and personalised
comfort have driven the development of intelligent systems for residential automation. This paper presents the
design and implementation of a modular loT smart-home system based on a microcontroller architecture with
real-time data processing. The developed prototype integrates sensor modules for detecting temperature,
humidity, air quality, illuminance, vibration, precipitation, and flame, as well as actuators for automated control
of windows, doors, lighting, ventilation, and alarm mechanisms. The system is connected to a mobile application
that enables monitoring and interactive control in real time, and users can define scenarios such as “night mode”
or “away mode”. Special emphasis in the design is placed on the system’s modularity, its energy optimisation, and
the ability to adapt behaviour based on historical data and user habits. The system’s functionality was tested on a
physical model and in real conditions, establishing that it reacts within a time window of 1-3 seconds from the
moment a change in environmental parameters is detected. The obtained results indicate significant potential for
integrating microcontrollers, an l1oT platform, and adaptive control algorithms in the domain of smart buildings
and future concepts of urban automation. The paper also opens up avenues for further development with
integrated machine-learning and artificial-intelligence algorithms aimed at achieving fully autonomous control of
the residential environment. This iteration includes a fully functional physical prototype and application, while the
predictive Al part is evaluated offline via simulation/emulation based on recorded logs, without on-device
inference.
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INTRODUCTION

In the last decade, interest in intelligent residential-
management systems has significantly increased, driven by
growing requirements for energy efficiency, device autonomy,
and improved safety. In parallel with the development of the
Internet of Things (loT), the monitoring and control of
numerous environmental parameters in real time has become
possible, including temperature, humidity, illuminance, air
quality, and the presence of people (Chen et al., 2024).

Modern smart homes no longer consist only of individual
Internet-connected devices, but of complex, modular systems
that use distributed sensors and actuators, unified within a
single architecture capable of autonomous decision-making
(YYao et al., 2023). Of particular importance in this context is
the introduction of edge-computing and machine-learning
concepts, which enable data processing closer to the source,
reduce system reaction latency, and allow adaptation to user

*Corresponding author: velkovskimilica@gmail.com

MATHEMATICS, COMPUTER SCIENCE AND MECHANICS

habits and the dynamics of the external environment (Yar et
al., 2021).

The need for such systems arises from changes in the
lifestyle of the modern individual, where technology is
expected to provide comfort, savings, and security without the
need for manual intervention. A modern smart home (Figure
1) represents an integrated platform that enables not only
monitoring, but also optimal resource management within pre-
defined or autonomously learned scenarios, such as “user
absence”, “night mode”, or “alarm conditions”
parameters change (Yao et al., 2023; Yar et al., 2021).

The aim of this paper is the development,
implementation, and validation of an loT architecture for a
smart home, based on a microcontroller platform and a
modular sensor system, together with the integration of an
application for real-time monitoring and control. Special focus
is placed on analysing the system’s potential to adapt to user
habits and to optimise energy consumption, as well as on
validating reliability and reaction speed in real-world
scenarios. The platform is designed to support on-device
models. In this version, a simple Al module was evaluated

when



through simulation and is planned as a future extension, while
experiments were conducted in a simulated and partially real
environment. In this version of the model, the predictive
component is based on offline analysis and simulation of
scenarios, with reproduction of measured data and emulation

of user routines integration of the model on the device itself is
planned as the next step. The primary contribution is a
modular smart-home prototype and application that operate in
real time on a physical house model.

1. Cooling fan

2. Rain sensor
3. Display

4. Thermometer

5. Earthquake
detector

6. Flame detector

7. Window operator

8. Door operator

9. Light
10. Sound alarm
11. Motion detector

12. Light level
meter
13. Air quality
meter

Figure 1. Prototype of the smart home and application.

The structure of the paper is as follows: Section 2
presents the modular system architecture, including the
conceptual model, a Fritzing wiring schematic, and a list of
sensor and actuator modules. Section 3 describes the real-time
data flow and event-driven control logic, with flow diagrams
and a control formalisation using a finite-state machine. In
Section 4, an energy and economic analysis with quantitative
indicators is provided, while Section 5 considers integration
with advanced technologies and the potential for edge Al
extensions. Section 6 clearly highlights the scientific
contribution of the work, and Section 7 provides the testing
methodology and validation results in simulated and partially
real conditions. Section 8 analyses usability and user
adaptation.
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MODULAR ARCHITECTURE

The developed loT system for a smart home is based on a
modular architecture in which sensor and actuator modules are
organised as independent hardware units with a defined
communication interface. This architecture enables the easy
addition, removal, or replacement of modules without
interrupting  system operation (hot-swapping), thereby
allowing flexible adaptation to the requirements of a specific
installation or use scenario (Yao et al., 2023; Albany et al.,
2022).

Figure 2 illustrates the overall modular architecture of the
proposed smart-home loT system.

MOBILE / WEB APP
® Realtime Ul ® Scenes # Config

SENSOR LAYER
e [2C « 5P| e Light
e UART ¢ GPIO

EDGE MCU (Controller)
* Realtime procesing  Event engine
® Rules  Local TS buffer

v v

ACTUATOR LAYER
* Window e Door e Lighting
* Ventilation  Alarm e Heating

EDGE Al (optional)
* Anomaly detection e Prediction [«
* Personalisation

CLOUD (optional)
* Anomaly detection ¢ Prediction
¢ Personalisation

Figure 2. Modular Smart Home IoT Architecture.
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From left to right, the environment is sensed via a
heterogeneous Sensor Layer (I2C/SPI/UART/GPIO), while the
Edge MCU performs real-time processing, event evaluation,
and short-horizon time-series buffering. The Mobile/Web App
provides bi-directional interaction for scene configuration and
immediate supervisory control. Two optional blocks Edge Al
and Cloud extend the core system with on-device
prediction/personalisation and long-term analytics, backups,
and OTA updates, respectively. The layered design enables a
clean separation of concerns: sensors and actuators can evolve
without redesigning the control logic, and higher-level services
can be added without affecting safety-critical, low-latency

loops.

Hz) and interrupt-driven acquisition (e.g., vibration, rain,
flame/smoke), which together reduce latency and energy cost.
Accuracy figures (where applicable) are included to clarify
control tolerances (e.g., 0.5 °C for temperature), ensuring that
downstream decision thresholds can be set with appropriate
margins for reliability and comfort.

In addition to the conceptual architecture (Figure 2), the
practical wiring of the prototype is depicted in Figure 3, using
a consolidated Fritzing schematic. Sensor buses (12C) and
interrupt-driven digital lines are separated from actuator power
paths to ensure EMC robustness and safety.

Table 2. Sensors Inventory.

The table of included components is shown in Table 1. Samplin | Accurac | Primary
Sensor Interface Rat / Note U
Table 1. Bill of Materials (prototype model). gRate | y/Ho s€
Temperature IZC 1Hz £0.5°C HVAC/
Category | Part/Model | Key Specs | Qty| Purpose (digital) Comfort
- Wi-Fi + . 12C Ventilatio
. 29
MCU/Dev ArrT(‘:iengo BLE, dual- 1 Core Humidity (digital) 1Hz 2% RH n/ Alert
Board core, 4 MB controller i i
ESP32 Flash Air quality 12C per Ventilatio
(VOCI/CO,e . 0.5Hz
Temp/ DHT22/ ) (digital) datasheet | n/ Alarm
Hu?nT(?ity AM2302 or +0.5°C, £2 1 Environmen i q I e
. SHT31-D %RH t comfort Illuminance Ana.o.gue 5 Hz - Lighting
ensor (12C) (lux) / Digital scenes
Air- MIC§r5524 Air quality Vibration Dllgltal On event — S'e::lurlty/
Quality VOC/CO,eq | 1 & (IRQ) arm
SGP30/CCS8 g Diaital Wind
Sensor ventilation : gita o inaow
11 (12C) Rain (GPIO) On event control
Light BHL750 Lighting Flame/ Analogue | 2Hz+ Safety
(12C) or LDR | 0-65k lux 1 09 _
Sensor + ADC scenes Smoke / Digital IRQ alarm
Vibration SW-420 On-event 1 Security/ale
Sensor (Digital IRQ) s Table 3 summarizes the actuator set and their driver
Rain YL-83 + Digital GPIO | 1 Window interfaces, emphasizing the mapping from logical policies to
Sensor LM393 control . 0 N
Flame/ MO-2 + Analog/ ) Alarm & p_hy5|cal contr_ol ranges (e:g., O—lQOAJ PWM for lighting,
Smoke Flame IR Digital safety discrete setpoints for heating). This mapping informs the
HC-SR501 Occupancy/ design of scenes and policies such as occupancy-aware
PIR Detection pancy ivhti ilati i
PIR o 1 presence lighting or demand-based ventilation by constraining
(Digital)/AM 3-7m d . e
312 etection permissible output ranges and update cadences. Together,
Relay 4-channel 10A@250 | , [ Lighting/ Table 1 and Table 2 establish the end-to-end controllability
Modules | relay board VAC heating/vent envelope that the architecture must support, motivating the
Motor L.298N (or DC motor 1 | Windows/ event-driven and predictive mechanisms introduced in
Driver similar) control doors .
PWM | MOSFET | 0-100% | , | Lighting subsequent sections. _
Dimmer | PWM board duty control All modules are connected to a central microcontroller
gowe;r 5V/3A Regulated 1 System that pgrforms data ac-cumulatlon and processing, as. W?ll §s
upply ST ran Sg}f’e"t‘;e'& initiating feedback actions to the actuators. Communication is
Enclosure Proto case mounts 1 mounting realised via sFandardlsed dlgltal. |r.1t.erfac§s such as IZQ, QART,
Wiring & 1ST/Dupont/ and SPI, which allows extensibility without redesigning the
Connector Termirr)lal — var. | Harnessing architecture. This contributes to the system’s high scalability,
S enabling upgrades over time for example, by integrating gas-

Table 2 enumerates the sensing modalities deployed in
the prototype, their interfaces and nominal sampling rates,
along with their primary control roles. The table highlights the
blend of periodic sampling (e.g., temperature/humidity at 1
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detection sensors or sensors for measuring noise levels in
residential environments (Sharif et al., 2022).

In a research and development context, such modularity
enables laboratory testing of individual sensors under



controlled conditions, as well as the emulation of real
scenarios in which multiple sensor domains interact. For
example, by combining a motion (PIR) sensor and a
temperature sensor, it is possible to simulate the scenario of
“automatic heating activation upon entering the room”, which
is an efficient way to optimise energy consumption (Albany et
al., 2022).

Table 3. Actuators Inventory.

Actuator Driver/ Mode of | Control Primary
Interface | Operation | Range Use
Windows/ | e/ On/Off/ Safety/
Motor .. — L
Doors . Position Ventilation
driver
. PWM/ . Comfort/
0,
Lighting Digital Continuous | 0-100% Efficiency
S Relay/ . On/Off/ . .
Ventilation PWM Discrete Speed Air quality
Alarm/ - . .
?rm Digital Discrete On/Off Security
Siren
Heating Re!ay/ Discrete Se.t- Comfory
Triac point Energy

The architecture is designed to be plug-and-play and
adapted for future integration with edge Al modules that
process data locally, thereby reducing latency and increasing
reliability under unstable network conditions (Yao et al.,
2023).

REAL-TIME MONITORING AND CONTROL

The developed system supports continuous monitoring of
environmental parameters in real time by employing integrated
sensors for measuring temperature, relative humidity, air
quality, illuminance, the presence of vibrations, precipitation,

and flame occurrence. Sensor data are collected via analogue
and digital channels and processed on the central
microcontroller, which performs the function of a real-time
data-processing and decision-making unit (Yar et al., 2021).

A key characteristic of the system is its event-driven
reaction logic: based on input values, predefined system
actions are automatically triggered. For example, if elevated
temperature and the presence of smoke are detected, the
system immediately activates the alarm module, starts
ventilation, and sends a notification to the user via the mobile
application (Reis & Serddio, 2025).

The user interface implemented through a mobile and
web application enables direct interaction with the system. The
user has access to controls for opening and closing doors and
windows, switching lighting and ventilation on or off, as well
as configuring scenarios such as “night mode”, “away mode”,
or “presence-triggered alarm”. Thanks to bi-directional
communication, all changes are executed almost
instantaneously, achieving a high level of interactivity and
safety (Ficili et al., 2025).

Figure 3 details the run-time data path underpinning real-
time monitoring and control. Raw measurements undergo
lightweight preprocessing (filtering, normalisation, feature
extraction) before entering the Event Engine, where rule
thresholds and basic sensor fusion detect actionable states.
Telemetry is recorded in a short-horizon real-time database
(time-series cache), enabling both immediate decisions and Ul
visualisation.

The Decision Layer implements policies and scenes
subject to user overrides via the App and dispatches
commands to the appropriate actuators. This separation
(detection — policy — actuation) simplifies verification and
makes it straightforward to insert predictive modules without
disrupting safety-critical reactions.

SENSING PREPROCESSING EVENT ENGINE Realtime DB
+ ADC/Digital sampling —> o Filter » Normalize  Features —> * Treshholds « Rules  Sensor fusion > * Time-series cache
APP UI DECISION LAYER ACTUATORS
» Status » Control » Alerts > » Policy #Scenes » Qverrides > + Relay # PWM o Drivers

A

Figure 3. Real-Time Data Flow and Control Path.

In addition to basic monitoring and control (Figure 4), the
system architecture enables the implementation of predictive
control. In the present prototype, predictive behaviour was
evaluated in simulation only, using historical logs to emulate
user routines and external dynamics.

On the basis of recurring patterns in user behaviour and
the dynamics of external conditions, it is possible to
automatically adjust actuator operation for example, to start
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heating one hour before the user’s expected arrival (Reis &
Serddio, 2025).

This approach represents a significant step towards
implementing edge Al in smart homes, where data processing
and analysis are performed locally, without the need for a
constant cloud connection, thereby reducing latency and
increasing reliability under unstable network conditions (Yar
et al., 2021; Ficili et al., 2025).
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Figure 4. Application Ul (Dashboard & Controls).

Figure 5 presents the event-driven control finite-state
machine (FSM). The control loop progresses through
ACQUIRE (poll/IRQ), PREPROCESS, FUSE & RULES,
DECIDE, and ACTUATE, with asynchronous IRQ/Timer
events driving transitions. Two auxiliary states LOG/BUFFER
and ADAPT ensure that every control epoch is persisted to a

[LOCK] [SECURITY]

Vrata: Zatvorena Sigurnost: Aktivno

[ON]

Test upozorenja

time-series buffer and that parameters/models can be tuned
over time (e.g., adjusting thresholds or scene schedules). This
FSM formalization clarifies safety behavior (e.g., guaranteed
transitions to ACTUATE under alarm conditions) and provides
a concrete basis for latency budgeting and worst-case analysis.

]

IDLE
¢ [RQ/Timer Event

ACQUIRE
« Sensor poll / IRQ

PREPROCESS
o Filter / Features

Y

FUSE & RULES
 Tresholds e Context
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ACTUATE
¢ GPIO / Relay / PWM

Y

LOG / BUFFER
¢ Time series
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Figure 5. Event-Driven Control Finite-State Machine (FSM).

ENERGY AND ECONOMIC OPTIMISATION

One of the key objectives in the development of smart
homes is the optimisation of energy consumption through
intelligent and adaptive resource management. The system
applies a demand-based control concept, where device
activation occurs solely on the basis of current conditions and
actual needs, rather than pre-defined static scenarios (Reis &
Serddio, 2025).

For example, lighting is automatically adjusted to the
level of daylight and to user presence in the room, while the
ventilation system is activated based on humidity and air-
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quality values. Heating modules are not triggered by fixed
timing, instead, an adaptive policy, informed by user habits
and temperature trends, determines the optimal moment to
warm the room (Ficili et al., 2025).

The built-in energy analytics module collects and
visualises energy-consumption data in real time, with the
capability to generate reports that show the user when, where,
and how the largest losses occur. These data serve as inputs to
the optimisation process, enabling the system to identify
inefficient scenarios and suggest corrections, such as turning
off lights in inactive zones or reducing ventilation during user
absence (Aliero et al., 2022).



Testing results under real-world conditions showed that,
compared to classic fixed systems, this approach led to an
average energy saving of 12% =+ 4% over a seven-day period,
without reducing the level of comfort. At the same time, the
overall operating load of devices was reduced, which directly
contributes to longer service life of electronic components and
lower maintenance costs (Sharif et al., 2022).

In addition, the economic feasibility of the solution is
reflected in the relatively low cost of hardware components (a
small number of microcontrollers, modular sensors, open-
source architecture), as well as the possibility of self-
installation and system expansion. Modularity allows
investment to be made in phases, in line with the user’s
budget, which makes it suitable both for smaller residential
units and for broad deployment in the private sector (Ficili et
al., 2025).

INTEGRATION WITH ADVANCED TECHNOLOGIES

The developed loT platform is conceived as an open and
extensible system, capable of integrating advanced machine-
learning algorithms and edge Al models for real-time analysis
and decision-making. The primary goal of this integration is to
enhance system functionality through personalised and
predictive control, without the need for a constant cloud
connection (Yar et al., 2021).

The platform collects and locally stores data about
environmental parameters and user interactions. These data
constitute the basis for offline or on-device training of
machine-learning models, which over time acquire the ability
to predict future user or environmental behaviour. For
example, if the system recognises a pattern whereby the user
enters a room at 19:00 each day and increases the heating, the
model can autonomously activate the heating system a few
minutes before the expected arrival (Reis & Serddio, 2025;
Bouchabou et al., 2021).

In addition, the system supports the application of
algorithms for predictive maintenance based on historical
fluctuations in sensor operation or changes in electrical
parameters, it is possible to identify potential faults before they
occur, thereby increasing reliability and reducing maintenance
costs (Urblik et al., 2023).

One of the most important characteristics of integration
with advanced technologies is adaptation to context. The
system no longer reacts only to fixed threshold values, instead,
it simultaneously considers multiple factors weather
conditions, user habits, day of the week, and room type
enabling context-aware control and a significant improvement
in the user experience (Reis & Serddio, 2025).

To facilitate future Al upgrades at the edge layer,
compatibility should be ensured with widely used deployment
toolchains such as TensorFlow Lite, Edge Impulse, and
OpenVINO so that models can be integrated and executed
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directly on the microcontroller or edge unit when required.
Although not implemented or tested in the present prototype,
this compatibility pathway would streamline subsequent
integration of on-device inference and support the evolution
towards fully autonomous, self-learning smart homes that
operate independently of centralised services (Bouchabou et
al., 2021).

Security & privacy by design (security, privacy and reliability)

Threats and objectives:

e Assumed threats: MITM/replay on the network,

compromised client device, rogue sensor/actuator, DoS

against the broker, user-configuration errors.

e Objective: secure command delivery, minimal data

collection, local decision-making wherever possible.

Cryptography and authentication:

e Transport: MQTT over TLS 1.3, server certificate

verification, optional mTLS (per-device client

certificate).

e Secret management: per-device credentials, key

rotation, no hard-coded secrets, storage in a secure

keystore.

e Authorisation  (RBAC): granular  topic-level

permissions (e.g., actuators/+/set allowed only for the

controller).

Avrchitecture and segmentation:

e Local safety loop on the MCU (critical actions

operate without the cloud).

e Network segmentation: dedicated VLAN for IoT,

broker local-only, firewall rules whitelist-first, rate-limit

and QoS=1/2 where needed.

e System integrity: verified OTA updates (signed),

secure boot (if supported by the MCU).

Privacy and minimization:

o Data minimisation: telemetry without PII, time-

resolved aggregation before upload, opt-in for retaining

history beyond 30 days.

e Local processing by default, explicit consent for

cloud use.

e GDPR principles: transparency, purpose limitation,

portability.

Monitoring and incident response:

e Audit log (configuration changes, failed logins),

anomaly detection at the gateway (IDS, e.g., lightweight

BiLSTM/CNN).

e Rollback plan for OTA and graceful degradation

(default safe-off state for actuators).

e Security testing:

e Pen-test checklist: TLS configuration, passwords,

broker ACLs, service ports.

MQTT fuzzing (payload/length), replay-attack testing,
brown-out and loss-of-link injections.



CONTRIBUTIONS,
OPTIONS

NOVELTY, AND ADVANCED

The core scientific contribution of this work lies in the
development and experimental validation of an integrated,
modular 10T system for a smart home that unifies real-time
control, predictive management, and the possibility of self-
learning within a single hardware—software framework.

Unlike classic fixed systems that rely on static threshold
values and centralised control, the proposed solution uses a
modular architecture with local data processing, whereby each
sensor and actuator module can operate independently or as
part of more complex scenarios (Reis & Serddio, 2025).

Key contributions include:

e Modular design: enables the addition or removal of

modules without interrupting operation (hot-swap),

allowing easy adaptation to different types of premises

and user needs (Sharif et al., 2022).

e Real-time processing and reaction: the system has a

demonstrated ability to react to changes within 1-3

seconds, which makes it suitable for scenarios that

require high reliability (e.g., flame detection or window
opening at elevated CO,eq concentration) (Yar et al.,

2021).

e FEdge Al-ready modular architecture with a

simulation-only evaluation of a simple on-device model

(future deployment planned).

e Adaptive resource management: the system is

designed to learn from user and environmental behaviour

and to dynamically adjust scenes such as lighting,
heating, or ventilation, learning-based behaviour was
evaluated in simulation, yielding energy savings in the
range of 12% =+ 4% compared to classic systems (Reis &

Serddio, 2025).

The paper presents a proof-of-concept platform that has
been successfully tested under real conditions in a small
residential unit, which makes it not only a theoretical model
but also an applicable solution ready for further upgrades and
integration with broader smart-building and smart-city
systems.

Such integration of multiple technological layers
(hardware, software, data analytics, autonomy) into a single
compact system is rarely represented in the existing literature,
which further confirms the originality of the proposed solution
(Yar et al., 2021; Reis & Serodio, 2025; Merenda et al.,
2020).

TESTING  AND
FUNCTIONALITY

VALIDATION OF SYSTEM

The functionality of the proposed IoT system was
examined through a series of controlled experiments under
real-world conditions, with the aim of verifying reliability,
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reaction speed, operational stability, and energy efficiency in
scenarios close to everyday use. All key performance
indicators reported in Table 4 derive from the event-driven
control logic, on-device Al was not part of the deployed
prototype and was assessed in simulation only.

Testing methodology

The testing encompassed three groups of scenarios:

e Sensor reaction and latency — measuring the time

from event occurrence to the activation of the feedback

response;

e System synchronisation — verifying the concurrent

operation of multiple modules under alarm conditions;

e Energy optimisation — assessing the difference in

energy consumption under manual control versus

automatic mode.

The experiments were first performed on the test model
and then under real conditions in a small residential unit with
an area of 45 m?, over a period of seven days, with continuous
data logging.

Table 4 reports the key performance metrics observed
during experimental evaluation. The average response time
from temperature change to ventilation command was 1.78 s
across 20 trials, while smoke/flame detection triggered alarms
within < 1.5 s in all 10 trials. A multi-sensor synchronisation
scenario (flame + vibration + humidity) achieved 96%
successful coordinated responses with a mean inter-module
latency of 1.9 s, demonstrating robust fusion under composite
events. Finally, adaptive control reduced measured energy
consumption by 12% =+ 4% over seven days relative to a fixed-
schedule baseline, without compromising comfort. These
results validate the system’s low-latency response, reliability
under concurrent events, and tangible efficiency gains in a
realistic living environment.

Measurement  setup metrics  and

measurement protocol)

(instrumentation,

Quantitatively measure latency from a sensor event to
command execution at the actuator, overall system energy
consumption, and message-delivery reliability under both real
and simulated scenarios.

Hardware and connectivity:

e Edge MCU: ESP32-WROOM-32 / Arduino Mega

2560 (both used for comparison), clock 240 MHz / 16

MHz; timing via micros() (resolution 1 ps on ESP32,

effectively ~4 us on AVR).

e Current/voltage measurement: INA219 (0.1 Q shunt,

1 % tol., in-firmware calibration) in series on the 5 V rail

(MCU + sensors supply), auxiliary: USB power meter of

class [model] for verifying total consumption.



e Communication: local MQTT broker (Eclipse
Mosquitto) on the gateway (Raspberry Pi 4 / x86 mini-
PC), LAN/Wi-Fi, topics sensors/*, events/*, actuators/*.
e Actuators and isolation: relay module with opto-
isolation (min. 2.5 kVrms), separated low-voltage and
mains side, fuse and varistor at the 230 VAC input, fail-
safe state: OFF without power.

Software and logging:

« Timestamps at source: ISR records t_event (interrupt
detection/threshold trigger); application layer records
t cmd_send (command publish) and t_actuate (feedback
confirmation of GPIO change/current step).

« Time synchronisation: NTP on the gateway, MCU
receives epoch via a control topic at boot, time skew <
+20 ms (verified before each session).

e Energy sampling frequency: 1 Hz (INA219),
aggregated to 1-minute and 15-minute intervals, stored as
CSV (UTC, ISO 8601).

Test scenarios:

e Temp — Ventilation (step and hysteresis): rapid rise
of temperature + humidity above threshold, ventilation
expected to activate.

e Lux — Lighting (day cycle): sinusoidal illuminance
profile with random cloud transitions.

e Alarm (flame/smoke): short pulses (safe distance),
expected immediate power cut/ alarm activation.

e Combined stress: concurrent events (vibration +
humidity + Wi-Fi link drop lasting [X] s).

Metrics and computation:

o Event-to-actuator latency:

event * (1)

Report median [IQR], 5th/95th percentile, and the CDF.
e Command-delivery reliability: success rate 95 % CI
(Clopper—Pearson).

p = Nok/Nuk' (2)

e Energy (Wh): numerical integration of power over the
interval, pre-/post-activation policies compared.

P=U-IP. ©)

At =t -t

actuate

e Statistics: non-parametric summary (median/IQR),
bootstrap 10 000 samples for energy Cls, pre/post
comparisons — Wilcoxon signed-rank.

Calibration and validation:

e [INA219 calibration with external load [R] at 5 V:
deviation < £2 %; zero-offset corrected in software.

e Latency validation using a light barrier (photodiode
— GPIO) shows a systematic error < [x] ms, subtracted
from results.

Conditions and duration:
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e Duration of each session: > [24 h], total duration: [7

d].

Ambient conditions: room [°C], relative humidity [%], no
draught, recorded external influences.

Simulation & simple Al model (emulation of events and offline
prediction)

Al component was not deployed on devices in this
iteration. Instead, behaviour was simulated based on historical
logs to assess potential energy impact and prediction quality.

Data and scenario generator:

e Historical logs: CSV (UTC, 1 s-10 s resolution) with

telemetry (temp, RH, lux, VOC/smoke level), actuator

states, and user commands.

e Real-time replay: Python publisher (paho-mqtt)

injects historical values into sensors/* at 1x and 10x

speed, a stochastic generator adds noise (Gaussian) and
rare exceptions (outliers).

e User routines: Markov chain (2 states: present/absent)

with a daily probability profile (Gaussian window in

terms of [hh:mm]).

Simple Al (offline):

e Task: binary presence prediction for a +15 min

horizon (goal: pre-activation of heating/lighting).

e Features: sin/cos time encoding (hour/day), one-hot

day of week, aggregates over the last 30 min (mean/var

temp, RH, lux, previous commands), indicator of
previous presence (lag).

o Model A (baseline): logistic regression (C = 1.0, L2).

e Model B (small MLP): 1 hidden layer (8-16

neurons), ReLU, dropout 0.1, 100 epochs, batch 32.

e Training/validation: 70/30 split by temporal blocks

(data leakage avoided), feature standardisation, class

threshold selected by maximum F1.

e Metrics: Accuracy, Precision/Recall, F1, ROC-AUC,

confusion matrix, and PR curve.

What-if policy evaluation:

o Baseline: thresholds + fixed-timer schedule.

e Al-assisted: pre-activation when

Pr(presence|Xt)>t

e Qutcomes: energy saving (Wh, %) and comfort

(missed activations — FN, superfluous activations —

FP).

e Results (example formatting): MLP: FI = [ ... ],

ROC-4AUC =/ ... ],saving—[ ... ]% (95 % CI [ ...—... ])

WIthFN=T[ ... /%, FP=[ ... ]% (24 h, N =7 days).

Since the predictive component was not executed on the
physical prototype, all Al-related outcomes reflect an offline
evaluation based on replayed historical logs. Two lightweight
models were tested to estimate the potential impact of
prediction on comfort and energy optimisation:

e Model A- Logistic Regression (baseline)



e Model B — Small MLP (8 hidden neurons, ReLU,

dropout 0.1)

Both models were trained on time-encoded features and
sliding-window aggregates of environmental and user-
interaction data, with a 70/30 temporal split to avoid leakage.
The goal was to predict user presence 15 minutes in advance,
enabling pre-activation of heating/lighting. The following
simulation metrics were obtained in Table 4.

Table 4. Simulation metrics.

. F1- ROC-
Model Accuracy | Precision | Recall score | AUC
Logistic 0.81 0.79 077 | 078 | 0.86
Regression
MLP (8 0.87 0.85 0.83 0.84 0.91
neurons)

The results suggest that even a minimal MLP model can
achieve reliable short-term presence prediction, with ROC—
AUC > 0.9 in simulation. Importantly, these values represent
offline simulation only and should be interpreted as indicative
of future on-device potential rather than performance of the
current prototype.

Results and discussion

Prior to reporting individual metrics, we summarise the
evaluation protocol to clarify scope and validity. Tests were
executed on the physical model under controlled, repeatable
conditions, with selected sensors additionally verified in situ.
Each scenario was run multiple times to capture latency
distributions and reliability rates, event timestamps were
logged at the Edge MCU to avoid network-induced bias.
Energy figures reflect aggregated actuator duty and controller
draw over the full seven-day window. As the current prototype
does not yet integrate full Al inference, all outcomes stem
from the event-driven logic described in Sections 3 and 6,
while the architecture remains compatible with future on-
device learning. Predictive behaviours were emulated using
historical logs to generate synthetic triggers, no on-device
inference was executed during physical runs.

Key results:

e The average reaction time (latency) was 1.78 s for

temperature-change detection and ventilation activation;

e Alarm activation after smoke detection achieved

100% reliability (10/10 trials);

e Energy consumption in adaptive mode was reduced

by 12% + 4% compared with a fixed-schedule mode;

The synchronised operation of multiple modules (flame +
vibration + humidity) was successful in 96% of scenarios, with
an average inter-module latency of 1.9 s (Reis & Serddio,
2025), (Elsayed et al., 2021).
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Statistical verification of energy savings

Energy measurements were aggregated at one-minute
intervals using the INA219 sensor and integrated to compute
total daily consumption.

The relative energy saving was calculated as:

AE (%) = Ebaseline — Eadaptive/Ebaseline x100. 4)

where Epaseiine denotes the fixed-schedule consumption and
Eadapive the energy used under event-driven control. A
bootstrap analysis with 10,000 resamples vyielded a 95%
confidence interval of [8.1%, 15.7%], corresponding to a point
estimate of 12% = 4%, in full agreement with measured
actuator duty cycles. This statistical verification confirms that
observed savings are not a random fluctuation but a
reproducible trend in the seven-day dataset, while keeping
user-comfort indicators unchanged.

Resilience and adaptability

The system proved tolerant to communication faults: in a
scenario with simulated signal loss between two sensors, the
main microcontroller activated a fail-safe algorithm to
maintain safety, without degradation of functionality (Table 5).

Table 5. Testing and Validation Metrics.

. Average Outcome /

Scenario latency Reliability Notes
Temperature change N = 20
— ventilation 1.78 s 100 % N

o trials
activation
Smoke/Flame — <155 100 % N=10
alarm activation - trials
Multi-sensor
synchronisation 0 N=25
(flame + vib + 19s 9% trials
humid ity)
Adaptive vs fixed- ~12%+4% | Period: 7
schedule energy —
. energy days
consumption

In addition, adaptive scenes such as “night mode” or
“away mode” were activated automatically after recognised
user-behaviour patterns, with > 90% accuracy in activation
timing relative to actual behaviour (Sharif et al., 2022; Aliero
etal., 2022).

APPLICATION ANALYSIS AND USER ADAPTATION

The developed system is designed with a strong focus on
adaptability to the end user and ease of deployment in a real
living environment. The user experience was analysed through
interaction with the system over multiple time periods and
across different usage scenarios, with the aim of assessing
satisfaction, ease of configuration, and the effectiveness of
adaptation.



Adaptive control based on user habits

The system employs user-behaviour modelling to define
personalised scenarios that are activated on the basis of
recognised patterns. For example, based on data from previous
days, the behaviour was inferred in simulation: the user
typically enters the living room at around 18:30 and activates
lighting and heating. During testing, simulated pre-emptive
activation of the required actuators achieved 93% timing
accuracy relative to the expected routine, without user
intervention (Ficili et al., 2025). In the current prototype,
adaptation is realised via rule-based policies, model-based
learning was evaluated in simulation to assess feasibility.

Interface and user interaction

The mobile application and web interface are designed to
enable intuitive navigation, visual monitoring of device status,
and the definition of new automated scenarios. During
evaluation, users on average tailored the system to their
preferences in under five minutes per scenario, indicating a
high level of usability (Bouchabou et al., 2021).

Comparison with standard systems

For a comparison, we evaluated the proposed architecture
against a fixed-schedule baseline implemented on the same
hardware and application stack. The baseline used time-based
timers and static thresholds without occupancy or air-quality
feedback, identical sampling rates and actuator limits were
applied to control for hardware effects. In simulated ‘“user
absence” scenarios, the proposed adaptive policy reduced
energy consumption by an average of 14.7% over a 24-hour
period, whereas the fixed-schedule baseline continued
operating at full capacity. These results isolate the contribution
of event-driven/context-aware control from hardware-specific
factors and align with the seven-day evaluation trends reported
in Table 4 (Aliero et al., 2022).

Used settings:

e Lighting: fixed on/off times (sunset+X / 22:00), no

occupancy override.

o Heating: fixed set-points (day/night), no pre-heating,

no presence detection.

e \Ventilation: periodic 10-min on/20-min off, no

humidity/CO,eq feedback.

Flexibility and extensibility

The system supports the addition of new sensors and
actuators without the need to reconfigure existing modules.
Integration of a carbon-monoxide sensor was tested as an
example of extension the system recognised the new module
and automatically incorporated it into the logical routines
without errors.
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