
Bulletin of Natural Sciences Research  DOI: https://doi.org/10.5937/bnsr16-61990  

Vol. 16, No. 1, 2026.                                                                                                         Original Scientific Paper 

MATHEMATICS, COMPUTER SCIENCE AND MECHANICS 

A MODULAR IOT PLATFORM FOR NEXT-GENERATION 

SMART HOMES: ARCHITECTURE, REAL-TIME CONTROL, 

AND EDGE AI READINESS 

NEBOJŠA ANDRIJEVIĆ1, ZORAN LOVREKOVIĆ2, BOJAN JOVANOVIĆ3, MILICA 

STOJIČEVIĆ1, MILICA VELKOVSKI1* 

1The Academy of Applied Studies Polytechnic, Katarine Ambrozić 3, Belgrade, Serbia 
2The Academy of Technical and Art Applied Studies, 24 Starine Novaka St., Belgrade, Serbia 
3The Academy of Applied Studies of Kosovo and Metohija, Dositeja Obradovića bb, 38218 Leposavić, Serbia 

ABSTRACT 

Rapid technological progress and increasingly pressing needs for energy efficiency, safety, and personalised 

comfort have driven the development of intelligent systems for residential automation. This paper presents the 

design and implementation of a modular IoT smart-home system based on a microcontroller architecture with 

real-time data processing. The developed prototype integrates sensor modules for detecting temperature, 

humidity, air quality, illuminance, vibration, precipitation, and flame, as well as actuators for automated control 

of windows, doors, lighting, ventilation, and alarm mechanisms. The system is connected to a mobile application 

that enables monitoring and interactive control in real time, and users can define scenarios such as “night mode” 

or “away mode”. Special emphasis in the design is placed on the system’s modularity, its energy optimisation, and 

the ability to adapt behaviour based on historical data and user habits. The system’s functionality was tested on a 

physical model and in real conditions, establishing that it reacts within a time window of 1–3 seconds from the 

moment a change in environmental parameters is detected. The obtained results indicate significant potential for 

integrating microcontrollers, an IoT platform, and adaptive control algorithms in the domain of smart buildings 

and future concepts of urban automation. The paper also opens up avenues for further development with 

integrated machine-learning and artificial-intelligence algorithms aimed at achieving fully autonomous control of 

the residential environment. This iteration includes a fully functional physical prototype and application, while the 

predictive AI part is evaluated offline via simulation/emulation based on recorded logs, without on-device 

inference.  

Keywords: Internet of things (IoT), Smart home automation, Modular architecture, Edge computing, Real-time 

monitoring, Energy optimization, Edge ai, Event-driven control. 

INTRODUCTION 

In the last decade, interest in intelligent residential-

management systems has significantly increased, driven by 

growing requirements for energy efficiency, device autonomy, 

and improved safety. In parallel with the development of the 

Internet of Things (IoT), the monitoring and control of 

numerous environmental parameters in real time has become 

possible, including temperature, humidity, illuminance, air 

quality, and the presence of people (Chen et al., 2024). 

Modern smart homes no longer consist only of individual 

Internet-connected devices, but of complex, modular systems 

that use distributed sensors and actuators, unified within a 

single architecture capable of autonomous decision-making 

(Yao et al., 2023). Of particular importance in this context is 

the introduction of edge-computing and machine-learning 

concepts, which enable data processing closer to the source, 

reduce system reaction latency, and allow adaptation to user 
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habits and the dynamics of the external environment (Yar et 

al., 2021). 

The need for such systems arises from changes in the 

lifestyle of the modern individual, where technology is 

expected to provide comfort, savings, and security without the 

need for manual intervention. A modern smart home (Figure 

1) represents an integrated platform that enables not only 

monitoring, but also optimal resource management within pre-

defined or autonomously learned scenarios, such as ―user 

absence‖, ―night mode‖, or ―alarm conditions‖ when 

parameters change (Yao et al., 2023; Yar et al., 2021). 

The aim of this paper is the development, 

implementation, and validation of an IoT architecture for a 

smart home, based on a microcontroller platform and a 

modular sensor system, together with the integration of an 

application for real-time monitoring and control. Special focus 

is placed on analysing the system’s potential to adapt to user 

habits and to optimise energy consumption, as well as on 

validating reliability and reaction speed in real-world 

scenarios. The platform is designed to support on-device 

models. In this version, a simple AI module was evaluated 
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through simulation and is planned as a future extension, while 

experiments were conducted in a simulated and partially real 

environment. In this version of the model, the predictive 

component is based on offline analysis and simulation of 

scenarios, with reproduction of measured data and emulation 

of user routines integration of the model on the device itself is 

planned as the next step. The primary contribution is a 

modular smart-home prototype and application that operate in 

real time on a physical house model. 

 

Figure 1. Prototype of the smart home and application. 

The structure of the paper is as follows: Section 2 

presents the modular system architecture, including the 

conceptual model, a Fritzing wiring schematic, and a list of 

sensor and actuator modules. Section 3 describes the real-time 

data flow and event-driven control logic, with flow diagrams 

and a control formalisation using a finite-state machine. In 

Section 4, an energy and economic analysis with quantitative 

indicators is provided, while Section 5 considers integration 

with advanced technologies and the potential for edge AI 

extensions. Section 6 clearly highlights the scientific 

contribution of the work, and Section 7 provides the testing 

methodology and validation results in simulated and partially 

real conditions. Section 8 analyses usability and user 

adaptation. 

MODULAR ARCHITECTURE 

The developed IoT system for a smart home is based on a 

modular architecture in which sensor and actuator modules are 

organised as independent hardware units with a defined 

communication interface. This architecture enables the easy 

addition, removal, or replacement of modules without 

interrupting system operation (hot-swapping), thereby 

allowing flexible adaptation to the requirements of a specific 

installation or use scenario (Yao et al., 2023; Albany et al., 

2022). 

Figure 2 illustrates the overall modular architecture of the 

proposed smart-home IoT system.  

 

Figure 2. Modular Smart Home IoT Architecture. 
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From left to right, the environment is sensed via a 

heterogeneous Sensor Layer (I2C/SPI/UART/GPIO), while the 

Edge MCU performs real-time processing, event evaluation, 

and short-horizon time-series buffering. The Mobile/Web App 

provides bi-directional interaction for scene configuration and 

immediate supervisory control. Two optional blocks Edge AI 

and Cloud extend the core system with on-device 

prediction/personalisation and long-term analytics, backups, 

and OTA updates, respectively. The layered design enables a 

clean separation of concerns: sensors and actuators can evolve 

without redesigning the control logic, and higher-level services 

can be added without affecting safety-critical, low-latency 

loops. 

The table of included components is shown in Table 1. 

Table 1. Bill of Materials (prototype model). 

Category Part / Model Key Specs Qty Purpose 

MCU/Dev 

Board 

Arduino 

mega 
ESP32 

Wi-Fi + 

BLE, dual-

core, 4 MB 
Flash 

1 
Core 

controller 

Temp/ 

Humidity 

Sensor 

DHT22/ 
AM2302 or 

SHT31-D 
(I2C) 

±0.5 °C, ±2 

%RH 
1 

Environmen

t comfort 

Air-
Quality 

Sensor 

MICS5524 

or 
SGP30/CCS8

11 (I2C) 

VOC/CO₂eq 1 
Air quality 

& 

ventilation 

Light 

Sensor 

BH1750 

(I2C) or LDR 
+ ADC 

0–65k lux 1 
Lighting 

scenes 

Vibration 

Sensor 

SW-420 

(Digital IRQ) 
On-event 1 

Security/ale

rts 

Rain 

Sensor 

YL-83 + 

LM393 
Digital GPIO 1 

Window 

control 

Flame/ 

Smoke 

MQ-2 + 

Flame IR 

Analog/ 

Digital 
1 

Alarm & 

safety 

PIR 

HC-SR501 

PIR 

(Digital)/AM
312 

Detection   

3–7 m 
1 

Occupancy/

presence 
detection 

Relay 
Modules 

4-channel 
relay board 

10 A @ 250 
VAC 

1 
Lighting/ 

heating/vent 

Motor 
Driver 

L298N (or 
similar) 

DC motor 
control 

1 
Windows/ 

doors 

PWM 

Dimmer 

MOSFET 

PWM board 

0–100 % 

duty 
1 

Lighting 

control 

Power 

Supply 
5 V / 3 A Regulated 1 

System 

power 

Enclosure Proto case 
DIN/screw 

mounts 
1 

Safety & 

mounting 

Wiring & 
Connector

s 

JST/Dupont/

Terminal 
— var. Harnessing 

Table 2 enumerates the sensing modalities deployed in 

the prototype, their interfaces and nominal sampling rates, 

along with their primary control roles. The table highlights the 

blend of periodic sampling (e.g., temperature/humidity at 1 

Hz) and interrupt-driven acquisition (e.g., vibration, rain, 

flame/smoke), which together reduce latency and energy cost. 

Accuracy figures (where applicable) are included to clarify 

control tolerances (e.g., ±0.5 °C for temperature), ensuring that 

downstream decision thresholds can be set with appropriate 

margins for reliability and comfort.  

In addition to the conceptual architecture (Figure 2), the 

practical wiring of the prototype is depicted in Figure 3, using 

a consolidated Fritzing schematic. Sensor buses (I2C) and 

interrupt-driven digital lines are separated from actuator power 

paths to ensure EMC robustness and safety. 

Table 2. Sensors Inventory. 

Sensor Interface 
Samplin

g Rate 

Accurac

y / Note 

Primary 

Use 

Temperature 
I2C 

(digital) 
1 Hz ±0.5 °C 

HVAC/ 

Comfort 

Humidity 
I2C 

(digital) 
1 Hz ±2 % RH 

Ventilatio

n/ Alert 

Air quality 

(VOC/CO₂e

q) 

I2C 

(digital) 
0.5 Hz 

per 

datasheet 

Ventilatio

n/ Alarm 

Illuminance 

(lux) 

Analogue

/ Digital 
2 Hz — 

Lighting 

scenes 

Vibration 
Digital 

(IRQ) 
On event — 

Security/ 

Alarm 

Rain 
Digital 

(GPIO) 
On event — 

Window 

control 

Flame/ 

Smoke 

Analogue

/ Digital 

2 Hz + 

IRQ 
— 

Safety 

alarm 

Table 3 summarizes the actuator set and their driver 

interfaces, emphasizing the mapping from logical policies to 

physical control ranges (e.g., 0–100% PWM for lighting, 

discrete setpoints for heating). This mapping informs the 

design of scenes and policies such as occupancy-aware 

lighting or demand-based ventilation by constraining 

permissible output ranges and update cadences. Together, 

Table 1 and Table 2 establish the end-to-end controllability 

envelope that the architecture must support, motivating the 

event-driven and predictive mechanisms introduced in 

subsequent sections. 

All modules are connected to a central microcontroller 

that performs data accumulation and processing, as well as 

initiating feedback actions to the actuators. Communication is 

realised via standardised digital interfaces such as I2C, UART, 

and SPI, which allows extensibility without redesigning the 

architecture. This contributes to the system’s high scalability, 

enabling upgrades over time for example, by integrating gas-

detection sensors or sensors for measuring noise levels in 

residential environments (Sharif et al., 2022). 

In a research and development context, such modularity 

enables laboratory testing of individual sensors under 



 

MATHEMATICS, COMPUTER SCIENCE AND MECHANICS 

controlled conditions, as well as the emulation of real 

scenarios in which multiple sensor domains interact. For 

example, by combining a motion (PIR) sensor and a 

temperature sensor, it is possible to simulate the scenario of 

―automatic heating activation upon entering the room‖, which 

is an efficient way to optimise energy consumption (Albany et 

al., 2022). 

Table 3. Actuators Inventory. 

Actuator 
Driver/ 

Interface 

Mode of 

Operation 

Control 

Range 

Primary 

Use 

Windows/ 

Doors 

Relay/ 

Motor 

driver 

On/Off/ 

Position 
— 

Safety/ 

Ventilation 

Lighting 
PWM/ 

Digital 
Continuous 0–100% 

Comfort/ 

Efficiency 

Ventilation 
Relay/ 

PWM 
Discrete 

On/Off/

Speed 
Air quality 

Alarm/ 

Siren 
Digital Discrete On/Off Security 

Heating 
Relay/ 

Triac 
Discrete 

Set-

point 

Comfort/ 

Energy 

The architecture is designed to be plug-and-play and 

adapted for future integration with edge AI modules that 

process data locally, thereby reducing latency and increasing 

reliability under unstable network conditions (Yao et al., 

2023). 

REAL-TIME MONITORING AND CONTROL 

The developed system supports continuous monitoring of 

environmental parameters in real time by employing integrated 

sensors for measuring temperature, relative humidity, air 

quality, illuminance, the presence of vibrations, precipitation, 

and flame occurrence. Sensor data are collected via analogue 

and digital channels and processed on the central 

microcontroller, which performs the function of a real-time 

data-processing and decision-making unit (Yar et al., 2021). 

A key characteristic of the system is its event-driven 

reaction logic: based on input values, predefined system 

actions are automatically triggered. For example, if elevated 

temperature and the presence of smoke are detected, the 

system immediately activates the alarm module, starts 

ventilation, and sends a notification to the user via the mobile 

application (Reis & Serôdio, 2025). 

The user interface implemented through a mobile and 

web application enables direct interaction with the system. The 

user has access to controls for opening and closing doors and 

windows, switching lighting and ventilation on or off, as well 

as configuring scenarios such as ―night mode‖, ―away mode‖, 

or ―presence-triggered alarm‖. Thanks to bi-directional 

communication, all changes are executed almost 

instantaneously, achieving a high level of interactivity and 

safety (Ficili et al., 2025). 

Figure 3 details the run-time data path underpinning real-

time monitoring and control. Raw measurements undergo 

lightweight preprocessing (filtering, normalisation, feature 

extraction) before entering the Event Engine, where rule 

thresholds and basic sensor fusion detect actionable states. 

Telemetry is recorded in a short-horizon real-time database 

(time-series cache), enabling both immediate decisions and UI 

visualisation. 

The Decision Layer implements policies and scenes 

subject to user overrides via the App and dispatches 

commands to the appropriate actuators. This separation 

(detection → policy → actuation) simplifies verification and 

makes it straightforward to insert predictive modules without 

disrupting safety-critical reactions. 

 

Figure 3. Real-Time Data Flow and Control Path. 

In addition to basic monitoring and control (Figure 4), the 

system architecture enables the implementation of predictive 

control. In the present prototype, predictive behaviour was 

evaluated in simulation only, using historical logs to emulate 

user routines and external dynamics. 

On the basis of recurring patterns in user behaviour and 

the dynamics of external conditions, it is possible to 

automatically adjust actuator operation for example, to start 

heating one hour before the user’s expected arrival (Reis & 

Serôdio, 2025). 

This approach represents a significant step towards 

implementing edge AI in smart homes, where data processing 

and analysis are performed locally, without the need for a 

constant cloud connection, thereby reducing latency and 

increasing reliability under unstable network conditions (Yar 

et al., 2021; Ficili et al., 2025). 
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Figure 4. Application UI (Dashboard & Controls). 

Figure 5 presents the event-driven control finite-state 

machine (FSM). The control loop progresses through 

ACQUIRE (poll/IRQ), PREPROCESS, FUSE & RULES, 

DECIDE, and ACTUATE, with asynchronous IRQ/Timer 

events driving transitions. Two auxiliary states LOG/BUFFER 

and ADAPT ensure that every control epoch is persisted to a 

time-series buffer and that parameters/models can be tuned 

over time (e.g., adjusting thresholds or scene schedules). This 

FSM formalization clarifies safety behavior (e.g., guaranteed 

transitions to ACTUATE under alarm conditions) and provides 

a concrete basis for latency budgeting and worst-case analysis. 

 

Figure 5. Event-Driven Control Finite-State Machine (FSM). 

ENERGY AND ECONOMIC OPTIMISATION 

One of the key objectives in the development of smart 

homes is the optimisation of energy consumption through 

intelligent and adaptive resource management. The system 

applies a demand-based control concept, where device 

activation occurs solely on the basis of current conditions and 

actual needs, rather than pre-defined static scenarios (Reis & 

Serôdio, 2025). 

For example, lighting is automatically adjusted to the 

level of daylight and to user presence in the room, while the 

ventilation system is activated based on humidity and air-

quality values. Heating modules are not triggered by fixed 

timing, instead, an adaptive policy, informed by user habits 

and temperature trends, determines the optimal moment to 

warm the room (Ficili et al., 2025). 

The built-in energy analytics module collects and 

visualises energy-consumption data in real time, with the 

capability to generate reports that show the user when, where, 

and how the largest losses occur. These data serve as inputs to 

the optimisation process, enabling the system to identify 

inefficient scenarios and suggest corrections, such as turning 

off lights in inactive zones or reducing ventilation during user 

absence (Aliero et al., 2022). 
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Testing results under real-world conditions showed that, 

compared to classic fixed systems, this approach led to an 

average energy saving of 12% ± 4% over a seven-day period, 

without reducing the level of comfort. At the same time, the 

overall operating load of devices was reduced, which directly 

contributes to longer service life of electronic components and 

lower maintenance costs (Sharif et al., 2022). 

In addition, the economic feasibility of the solution is 

reflected in the relatively low cost of hardware components (a 

small number of microcontrollers, modular sensors, open-

source architecture), as well as the possibility of self-

installation and system expansion. Modularity allows 

investment to be made in phases, in line with the user’s 

budget, which makes it suitable both for smaller residential 

units and for broad deployment in the private sector (Ficili et 

al., 2025). 

INTEGRATION WITH ADVANCED TECHNOLOGIES 

The developed IoT platform is conceived as an open and 

extensible system, capable of integrating advanced machine-

learning algorithms and edge AI models for real-time analysis 

and decision-making. The primary goal of this integration is to 

enhance system functionality through personalised and 

predictive control, without the need for a constant cloud 

connection (Yar et al., 2021). 

The platform collects and locally stores data about 

environmental parameters and user interactions. These data 

constitute the basis for offline or on-device training of 

machine-learning models, which over time acquire the ability 

to predict future user or environmental behaviour. For 

example, if the system recognises a pattern whereby the user 

enters a room at 19:00 each day and increases the heating, the 

model can autonomously activate the heating system a few 

minutes before the expected arrival (Reis & Serôdio, 2025; 

Bouchabou et al., 2021). 

In addition, the system supports the application of 

algorithms for predictive maintenance based on historical 

fluctuations in sensor operation or changes in electrical 

parameters, it is possible to identify potential faults before they 

occur, thereby increasing reliability and reducing maintenance 

costs (Urblik et al., 2023). 

One of the most important characteristics of integration 

with advanced technologies is adaptation to context. The 

system no longer reacts only to fixed threshold values, instead, 

it simultaneously considers multiple factors weather 

conditions, user habits, day of the week, and room type 

enabling context-aware control and a significant improvement 

in the user experience (Reis & Serôdio, 2025). 

To facilitate future AI upgrades at the edge layer, 

compatibility should be ensured with widely used deployment 

toolchains such as TensorFlow Lite, Edge Impulse, and 

OpenVINO so that models can be integrated and executed 

directly on the microcontroller or edge unit when required. 

Although not implemented or tested in the present prototype, 

this compatibility pathway would streamline subsequent 

integration of on-device inference and support the evolution 

towards fully autonomous, self-learning smart homes that 

operate independently of centralised services (Bouchabou et 

al., 2021). 

Security & privacy by design (security, privacy and reliability) 

Threats and objectives: 

 Assumed threats: MITM/replay on the network, 

compromised client device, rogue sensor/actuator, DoS 

against the broker, user-configuration errors. 

 Objective: secure command delivery, minimal data 

collection, local decision-making wherever possible. 

Cryptography and authentication: 

 Transport: MQTT over TLS 1.3, server certificate 

verification, optional mTLS (per-device client 

certificate). 

 Secret management: per-device credentials, key 

rotation, no hard-coded secrets, storage in a secure 

keystore. 

 Authorisation (RBAC): granular topic-level 

permissions (e.g., actuators/+/set allowed only for the 

controller). 

Architecture and segmentation: 

 Local safety loop on the MCU (critical actions 

operate without the cloud). 

 Network segmentation: dedicated VLAN for IoT, 

broker local-only, firewall rules whitelist-first, rate-limit 

and QoS=1/2 where needed. 

 System integrity: verified OTA updates (signed), 

secure boot (if supported by the MCU). 

Privacy and minimization: 

 Data minimisation: telemetry without PII, time-

resolved aggregation before upload, opt-in for retaining 

history beyond 30 days. 

 Local processing by default, explicit consent for 

cloud use. 

 GDPR principles: transparency, purpose limitation, 

portability. 

Monitoring and incident response: 

 Audit log (configuration changes, failed logins), 

anomaly detection at the gateway (IDS, e.g., lightweight 

BiLSTM/CNN). 

 Rollback plan for OTA and graceful degradation 

(default safe-off state for actuators). 

 Security testing: 

 Pen-test checklist: TLS configuration, passwords, 

broker ACLs, service ports. 

MQTT fuzzing (payload/length), replay-attack testing, 

brown-out and loss-of-link injections. 
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CONTRIBUTIONS, NOVELTY, AND ADVANCED 

OPTIONS 

The core scientific contribution of this work lies in the 

development and experimental validation of an integrated, 

modular IoT system for a smart home that unifies real-time 

control, predictive management, and the possibility of self-

learning within a single hardware–software framework. 

Unlike classic fixed systems that rely on static threshold 

values and centralised control, the proposed solution uses a 

modular architecture with local data processing, whereby each 

sensor and actuator module can operate independently or as 

part of more complex scenarios (Reis & Serôdio, 2025). 

Key contributions include: 

 Modular design: enables the addition or removal of 

modules without interrupting operation (hot-swap), 

allowing easy adaptation to different types of premises 

and user needs (Sharif et al., 2022). 

 Real-time processing and reaction: the system has a 

demonstrated ability to react to changes within 1–3 

seconds, which makes it suitable for scenarios that 

require high reliability (e.g., flame detection or window 

opening at elevated CO₂eq concentration) (Yar et al., 

2021). 

 Edge AI-ready modular architecture with a 

simulation-only evaluation of a simple on-device model 

(future deployment planned). 

 Adaptive resource management: the system is 

designed to learn from user and environmental behaviour 

and to dynamically adjust scenes such as lighting, 

heating, or ventilation, learning-based behaviour was 

evaluated in simulation, yielding energy savings in the 

range of 12% ± 4% compared to classic systems (Reis & 

Serôdio, 2025). 

The paper presents a proof-of-concept platform that has 

been successfully tested under real conditions in a small 

residential unit, which makes it not only a theoretical model 

but also an applicable solution ready for further upgrades and 

integration with broader smart-building and smart-city 

systems. 

Such integration of multiple technological layers 

(hardware, software, data analytics, autonomy) into a single 

compact system is rarely represented in the existing literature, 

which further confirms the originality of the proposed solution 

(Yar et al., 2021; Reis & Serôdio, 2025; Merenda et al.,  

2020). 

TESTING AND VALIDATION OF SYSTEM 

FUNCTIONALITY 

The functionality of the proposed IoT system was 

examined through a series of controlled experiments under 

real-world conditions, with the aim of verifying reliability, 

reaction speed, operational stability, and energy efficiency in 

scenarios close to everyday use. All key performance 

indicators reported in Table 4 derive from the event-driven 

control logic, on-device AI was not part of the deployed 

prototype and was assessed in simulation only. 

Testing methodology 

The testing encompassed three groups of scenarios: 

 Sensor reaction and latency — measuring the time 

from event occurrence to the activation of the feedback 

response; 

 System synchronisation — verifying the concurrent 

operation of multiple modules under alarm conditions; 

 Energy optimisation — assessing the difference in 

energy consumption under manual control versus 

automatic mode. 

The experiments were first performed on the test model 

and then under real conditions in a small residential unit with 

an area of 45 m², over a period of seven days, with continuous 

data logging. 

Table 4 reports the key performance metrics observed 

during experimental evaluation. The average response time 

from temperature change to ventilation command was 1.78 s 

across 20 trials, while smoke/flame detection triggered alarms 

within ≤ 1.5 s in all 10 trials. A multi-sensor synchronisation 

scenario (flame + vibration + humidity) achieved 96% 

successful coordinated responses with a mean inter-module 

latency of 1.9 s, demonstrating robust fusion under composite 

events. Finally, adaptive control reduced measured energy 

consumption by 12% ± 4% over seven days relative to a fixed-

schedule baseline, without compromising comfort. These 

results validate the system’s low-latency response, reliability 

under concurrent events, and tangible efficiency gains in a 

realistic living environment. 

Measurement setup (instrumentation, metrics and 

measurement protocol) 

Quantitatively measure latency from a sensor event to 

command execution at the actuator, overall system energy 

consumption, and message-delivery reliability under both real 

and simulated scenarios. 

Hardware and connectivity: 

 Edge MCU: ESP32-WROOM-32 / Arduino Mega 

2560 (both used for comparison), clock 240 MHz / 16 

MHz; timing via micros() (resolution 1 µs on ESP32, 

effectively ~4 µs on AVR). 

 Current/voltage measurement: INA219 (0.1 Ω shunt, 

1 % tol., in-firmware calibration) in series on the 5 V rail 

(MCU + sensors supply), auxiliary: USB power meter of 

class [model] for verifying total consumption. 
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 Communication: local MQTT broker (Eclipse 

Mosquitto) on the gateway (Raspberry Pi 4 / x86 mini-

PC), LAN/Wi-Fi, topics sensors/*, events/*, actuators/*. 

 Actuators and isolation: relay module with opto-

isolation (min. 2.5 kVrms), separated low-voltage and 

mains side, fuse and varistor at the 230 VAC input, fail-

safe state: OFF without power. 

Software and logging: 

• Timestamps at source: ISR records t_event (interrupt 

detection/threshold trigger); application layer records 

t_cmd_send (command publish) and t_actuate (feedback 

confirmation of GPIO change/current step). 

• Time synchronisation: NTP on the gateway, MCU 

receives epoch via a control topic at boot, time skew < 

±20 ms (verified before each session). 

• Energy sampling frequency: 1 Hz (INA219), 

aggregated to 1-minute and 15-minute intervals, stored as 

CSV (UTC, ISO 8601). 

Test scenarios: 

 Temp → Ventilation (step and hysteresis): rapid rise 

of temperature + humidity above threshold, ventilation 

expected to activate. 

 Lux → Lighting (day cycle): sinusoidal illuminance 

profile with random cloud transitions. 

 Alarm (flame/smoke): short pulses (safe distance), 

expected immediate power cut/ alarm activation. 

 Combined stress: concurrent events (vibration + 

humidity + Wi-Fi link drop lasting [x] s). 

Metrics and computation: 

 Event-to-actuator latency: 

.actuate eventt t t                                                               (1) 

Report median [IQR], 5th/95th percentile, and the CDF. 

 Command-delivery reliability: success rate 95 % CI 

(Clopper–Pearson). 

.ok ukp N N                                                                   (2) 

 Energy (Wh): numerical integration of power over the 

interval, pre-/post-activation policies compared. 

.P U IP                                                                        (3)  

 Statistics: non-parametric summary (median/IQR), 

bootstrap 10 000 samples for energy CIs, pre/post 

comparisons — Wilcoxon signed-rank. 

Calibration and validation: 

 INA219 calibration with external load [R] at 5 V: 

deviation < ±2 %; zero-offset corrected in software. 

 Latency validation using a light barrier (photodiode 

→ GPIO) shows a systematic error < [x] ms, subtracted 

from results. 

Conditions and duration: 

 Duration of each session: ≥ [24 h], total duration: [7 

d]. 

Ambient conditions: room [°C], relative humidity [%], no 

draught, recorded external influences. 

Simulation & simple AI model (emulation of events and offline 

prediction) 

AI component was not deployed on devices in this 

iteration. Instead, behaviour was simulated based on historical 

logs to assess potential energy impact and prediction quality. 

Data and scenario generator: 

 Historical logs: CSV (UTC, 1 s–10 s resolution) with 

telemetry (temp, RH, lux, VOC/smoke level), actuator 

states, and user commands. 

 Real-time replay: Python publisher (paho-mqtt) 

injects historical values into sensors/* at 1× and 10× 

speed, a stochastic generator adds noise (Gaussian) and 

rare exceptions (outliers). 

 User routines: Markov chain (2 states: present/absent) 

with a daily probability profile (Gaussian window in 

terms of [hh:mm]). 

Simple AI (offline): 

 Task: binary presence prediction for a +15 min 

horizon (goal: pre-activation of heating/lighting). 

 Features: sin/cos time encoding (hour/day), one-hot 

day of week, aggregates over the last 30 min (mean/var 

temp, RH, lux, previous commands), indicator of 

previous presence (lag). 

 Model A (baseline): logistic regression (C = 1.0, L2). 

 Model B (small MLP): 1 hidden layer (8–16 

neurons), ReLU, dropout 0.1, 100 epochs, batch 32. 

 Training/validation: 70/30 split by temporal blocks 

(data leakage avoided), feature standardisation, class 

threshold selected by maximum F1. 

 Metrics: Accuracy, Precision/Recall, F1, ROC–AUC, 

confusion matrix, and PR curve. 

What-if policy evaluation: 

 Baseline: thresholds + fixed-timer schedule. 

 AI-assisted: pre-activation when  

𝑃𝑟(𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒∣𝑋𝑡)≥𝜏 

 Outcomes: energy saving (Wh, %) and comfort 

(missed activations — FN, superfluous activations — 

FP). 

 Results (example formatting): MLP: F1 = [ … ], 

ROC–AUC = [ … ], saving −[ … ]% (95 % CI [ …–… ]) 

with FN = [ … ]%, FP = [ … ]% (24 h, N = 7 days). 

Since the predictive component was not executed on the 

physical prototype, all AI-related outcomes reflect an offline 

evaluation based on replayed historical logs. Two lightweight 

models were tested to estimate the potential impact of 

prediction on comfort and energy optimisation: 

 Model A – Logistic Regression (baseline) 
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 Model B – Small MLP (8 hidden neurons, ReLU, 

dropout 0.1) 

Both models were trained on time-encoded features and 

sliding-window aggregates of environmental and user-

interaction data, with a 70/30 temporal split to avoid leakage. 

The goal was to predict user presence 15 minutes in advance, 

enabling pre-activation of heating/lighting. The following 

simulation metrics were obtained in Table 4. 

Table 4. Simulation metrics. 

Model Accuracy Precision Recall 
F1-

score 

ROC–

AUC 

Logistic 

Regression 
0.81 0.79 0.77 0.78 0.86 

MLP (8 

neurons) 
0.87 0.85 0.83 0.84 0.91 

The results suggest that even a minimal MLP model can 

achieve reliable short-term presence prediction, with ROC–

AUC > 0.9 in simulation. Importantly, these values represent 

offline simulation only and should be interpreted as indicative 

of future on-device potential rather than performance of the 

current prototype. 

Results and discussion 

Prior to reporting individual metrics, we summarise the 

evaluation protocol to clarify scope and validity. Tests were 

executed on the physical model under controlled, repeatable 

conditions, with selected sensors additionally verified in situ. 

Each scenario was run multiple times to capture latency 

distributions and reliability rates, event timestamps were 

logged at the Edge MCU to avoid network-induced bias. 

Energy figures reflect aggregated actuator duty and controller 

draw over the full seven-day window. As the current prototype 

does not yet integrate full AI inference, all outcomes stem 

from the event-driven logic described in Sections 3 and 6, 

while the architecture remains compatible with future on-

device learning. Predictive behaviours were emulated using 

historical logs to generate synthetic triggers, no on-device 

inference was executed during physical runs.  

Key results: 

 The average reaction time (latency) was 1.78 s for 

temperature-change detection and ventilation activation; 

 Alarm activation after smoke detection achieved 

100% reliability (10/10 trials); 

 Energy consumption in adaptive mode was reduced 

by 12% ± 4% compared with a fixed-schedule mode; 

The synchronised operation of multiple modules (flame + 

vibration + humidity) was successful in 96% of scenarios, with 

an average inter-module latency of 1.9 s (Reis & Serôdio, 

2025), (Elsayed et al., 2021). 

Statistical verification of energy savings 

Energy measurements were aggregated at one-minute 

intervals using the INA219 sensor and integrated to compute 

total daily consumption.  

The relative energy saving was calculated as: 

 % 100.E Ebaseline Eadaptive Ebaseline            (4) 

where Ebaseline denotes the fixed-schedule consumption and 

Eadaptive the energy used under event-driven control. A 

bootstrap analysis with 10,000 resamples yielded a 95% 

confidence interval of [8.1%, 15.7%], corresponding to a point 

estimate of 12% ± 4%, in full agreement with measured 

actuator duty cycles. This statistical verification confirms that 

observed savings are not a random fluctuation but a 

reproducible trend in the seven-day dataset, while keeping 

user-comfort indicators unchanged. 

Resilience and adaptability 

The system proved tolerant to communication faults: in a 

scenario with simulated signal loss between two sensors, the 

main microcontroller activated a fail-safe algorithm to 

maintain safety, without degradation of functionality (Table 5).  

Table 5. Testing and Validation Metrics. 

Scenario 
Average 

latency 

Outcome / 

Reliability 
Notes 

Temperature change 

→ ventilation 

activation 

1.78 s 100 % 
N = 20 

trials 

Smoke/Flame → 

alarm activation 
≤ 1.5 s 100 % 

N = 10 

trials 

Multi-sensor 

synchronisation 

(flame + vib + 
humidity) 

1.9 s 96 % 
N = 25 

trials 

Adaptive vs fixed-
schedule energy 

consumption 

— 
−12 % ± 4% 

energy 

Period: 7 

days 

In addition, adaptive scenes such as ―night mode‖ or 

―away mode‖ were activated automatically after recognised 

user-behaviour patterns, with > 90% accuracy in activation 

timing relative to actual behaviour (Sharif et al., 2022; Aliero 

et al., 2022). 

APPLICATION ANALYSIS AND USER ADAPTATION 

The developed system is designed with a strong focus on 

adaptability to the end user and ease of deployment in a real 

living environment. The user experience was analysed through 

interaction with the system over multiple time periods and 

across different usage scenarios, with the aim of assessing 

satisfaction, ease of configuration, and the effectiveness of 

adaptation. 
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Adaptive control based on user habits 

The system employs user-behaviour modelling to define 

personalised scenarios that are activated on the basis of 

recognised patterns. For example, based on data from previous 

days, the behaviour was inferred in simulation: the user 

typically enters the living room at around 18:30 and activates 

lighting and heating. During testing, simulated pre-emptive 

activation of the required actuators achieved 93% timing 

accuracy relative to the expected routine, without user 

intervention (Ficili et al., 2025). In the current prototype, 

adaptation is realised via rule-based policies, model-based 

learning was evaluated in simulation to assess feasibility. 

Interface and user interaction 

The mobile application and web interface are designed to 

enable intuitive navigation, visual monitoring of device status, 

and the definition of new automated scenarios. During 

evaluation, users on average tailored the system to their 

preferences in under five minutes per scenario, indicating a 

high level of usability (Bouchabou et al., 2021). 

Comparison with standard systems 

For a comparison, we evaluated the proposed architecture 

against a fixed-schedule baseline implemented on the same 

hardware and application stack. The baseline used time-based 

timers and static thresholds without occupancy or air-quality 

feedback, identical sampling rates and actuator limits were 

applied to control for hardware effects. In simulated ―user 

absence‖ scenarios, the proposed adaptive policy reduced 

energy consumption by an average of 14.7% over a 24-hour 

period, whereas the fixed-schedule baseline continued 

operating at full capacity. These results isolate the contribution 

of event-driven/context-aware control from hardware-specific 

factors and align with the seven-day evaluation trends reported 

in Table 4 (Aliero et al., 2022). 

Used settings: 

 Lighting: fixed on/off times (sunset+X / 22:00), no 

occupancy override. 

 Heating: fixed set-points (day/night), no pre-heating, 

no presence detection. 

 Ventilation: periodic 10-min on/20-min off, no 

humidity/CO₂eq feedback. 

Flexibility and extensibility 

The system supports the addition of new sensors and 

actuators without the need to reconfigure existing modules. 

Integration of a carbon-monoxide sensor was tested as an 

example of extension the system recognised the new module 

and automatically incorporated it into the logical routines 

without errors. 
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