# SOME PROPERTIES OF ONE-DIMENSIONAL POINT INTERACTIONS

### Abstract

In this review paper we shall give a brief account of some properties of so called point interactions that describe a potentials spatially localized. A different families of one-dimensional point interactions are investigated and then relevant tunneling times are calculated. Than we demonstrate how a bound state in the continuum may be generated applying supersymmetric quantum mechanics. Finally, it is shown how the latter method may be used to tailor phase rigidity of one-dimensional point interactions.

### References

Albeverio, S. 1988. Solvable models in quantum mechanics. New York: Springer-Verlag.

Albeverio, S., Gesztesy, F. & Holden, H. 1993. Comments on a recent note on the Schrodinger equation with a delta' -interaction. J. Phys. A: Math. Gen., 26 (15), pp. 3903-3904.

Albeverio, S., Dabrowski, L. & Kurasov, P. 1998. Symmetries of Schrödinger Operator with Point Interactions. Lett. Math. Phys., 45 (1), pp. 33-47, doi: 10.1023/A:1007493325970.

Avron, J. E., Exner, P. & Last, Y. 1994. Periodic Schrödinger operators with large gaps and Wannier–Stark ladders. Phys. Rev. Lett., 72 (6), pp. 896-899.

Berezin, F. A. & Faddeev, L. D. 1961. A remark on Schrödinger equation with a singular potential. Sov. Math. Dokl., 2, pp. 372-375.

Bogolyubov Jr., N. N. & Kruchinin, S. 2003. Modern approach to the calculation of the correlation function in superconductivity models. Mod. Phys. Lett. B, 17, pp. 709-724.

Carreau, M., Farhi, W. & Gutmann, S. 1990. Functional integral for a free particle in a box. Phys. Rev. D, 42, pp. 1194-1202.

Cheon, T., Exner, P. & Šeba, P. 2000a. Wave function shredding by sparse quantum barriers. Phys. Lett. A, 277, pp. 1-6. Doi: 10.1016/S0375-9601(00)00690-3.

Cheon, T., Shigehara, T. & Takayanagi, K. 2000b. Equivalence of local and separable realizations of discontinuity-inducing contact. J. Phys. Soc. Japan., 69, pp. 345-350.

Christiansen, P. L., Arnbak, H. C., Zolotaryuk, A. V., Ermakov, V. N. & Gaidei, Y. B. 2003. On the existence of resonances in the transmission probability for interactions arising from derivatives of Dirac's delta function. J. Phys. A: Math. Gen., 36, pp. 7589-7600.

Cooper, F., Khare, A. & Sukhatme, U. 1995. Supersymmetry and quantum mechanics. Phys. Rep. 251 (5-6), pp. 267-385.

Coutinho, F. A. B., Nogami,Y. & Perez, J. F. 1999. Time-reversal aspect of the point interactions in one-dimensional quantum mechanics. J. Phys. A: Math. Gen., 32 (12), pp. L133-L136.

Coutinho, F. A. B., Toyama, F. M. & Nogami, Y. 2008. One-dimensional point interaction with three complex parameter. J. Phys. A: Math. Gen., 41 (23), p. 253306.

Demkov, Y. N. & Ostrovskii, V. N. 1975. Zero-Range Potentials and their Applications in Atomic Physics. Leningrad: Leningrad University Press.

Dzhezherya, Y., Novak, I. Y. & Kruchinin, S. 2010. Orientational phase transitions of lattice of magnetic dots embedded in a London type superconductors. Supercond. Sci.Technol., 23 (10), pp. 105011.

Exner, P. 1995. Lattice Kronig-Penney Models. Phys. Rev. Lett., 74 (18), pp. 3503-3506.

Exner, P. 1996. Contact interactions on graph superlattices. J. Phys. A: Math. Gen., 29 (1), pp. 87-102.

Gadella, M., Negro, J. & Nieto, L. M. 2009. Bound states and scattering coefficients of the aδ (x)+ bδ′(x) potential. Phys. Lett. A, 373 (15), pp. 1310-1313.

Gesztesy, F. & Holden, H. 1987. A new class of solvable models in quantum mechanics describing point interactions on the line. J. Phys. A: Math. Gen., 20 (15), pp. 5157- 5177.

Kočinac, S. Lj. S., Milanović, V., Ikonić ,Z. & Indjin, D. 2007. Influence of nonparabolicity on tunneling times in semiconductor structures. Phys. Lett. A, 366 (1-2), pp. 130-133.

Kočinac, S. Lj. S. & Milanović, V. (2008). Tunneling times in complex potentials. Phys. Lett. A, 372 (3), pp. 191-196.

Kočinac, S. Lj. S. & Milanović, V. 2012a. Generalized point interaction and tunneling times. Mod. Phys. Lett. B, 26 (15), p. 1250092. doi: 10.1142/S021798491250092.

Kočinac, S. Lj. S. & Milanović, V. 2012b. Bound states in continuum generated by point interaction and supersymmetric quantum mechanics. Mod. Phys. Lett. B, 26 (27), 1250177. doi: 10.1142/S0217984912501771.

Kočinac, S. Lj. S. & Milanović, V. 2013. Phase Rigidity Of Point Interactions. Mod. Phys. Lett. B, 27 (1), 1350001. doi: 10.1142/S0217984913500012

Kruchinin, S., Nagao, H. & Aono, S. 2010. Modern aspect of superconductivity: theory of superconductivity. World Scientific. ISBN-9814261602.

Kurasov, P. B., Scrinzi, A. & Elander, N. 1994. δ' potential arising in exterior complex scaling. Phys. Rev. A, 49 (6), pp. 5095-5097.

Kurasov, P. 1996. Distribution theory for discontinuous test functions and differential operators with generalized coefficients. J. Math. Anal. Appl., 201 (1), pp. 297-323.

Marcuse, D. 1974. Theory of Dielectric Optical Waveguides. New York: Academic Press.

Milanović, V. & Ikonić, Z. 1997. Optimization of nonlinear optical rectification in semiconductor quantum wells using the inverse spectral theory. Solid State Commun., 104 (8), pp. 445-450.

Milanović, V. & Ikonić, Z. 2002. Supersymmetric generated complex potential with complete real spectrum. Phys. Lett. A, 293 (1-2), pp. 29-35.

Pappademos, J., Sukhatme, U. & Pagamenta, A. 1993. Bound states in the continuum from supersymmetric quantum mechanics. Phys. Rev. A, 48 (5), pp. 3525-3531.

Román, J. M. & Tarrach, R. 1996. The regulated four-parameter one-dimensional point interaction. J. Phys. A: Math. Gen., 29 (18), pp. 6073-6085.

Soldatov,V., Bogolyubov Jr, N. N. & Kruchinin, S. P. 2006. Method of intermediate problems in the theory of Gaussian quantum dots placed in a magnetic field. Condensed Matter Physics, 9 (1), pp. 151-159.

Šeba, P. 1986. Some remarks on the δ′-interaction in one dimension. Rep.Math. Phys., 24 (1), pp. 111-120.

Winful, H. G. 2006. Tunneling time, the Hartman effect, and superluminality: A proposed resolution of an old paradox. Phys. Rep., 436 (1-2), pp. 1-69.

Zolotaryuk, V. 2010. Boundary conditions for the states with resonant tunnelling across the δ -potential. Phys. Lett. A, 374 (15-16), pp. 1636-1641. doi:10.1016/j.physleta.2010.02.005.