CALCULATION OF THE FREQUENCY RESPONSE AND BANDWIDTH IN LOW NUMERICAL APERTURE STEP-INDEX PLASTIC OPTICAL FIBER USING TIME-DEPENDENT POWER FLOW EQUATION
Abstract
Time-dependent power flow equation is employed to calculate frequency response and bandwidth of low numerical aperture step-index optical fiber excited with Gaussian-like light source with large width. Both, frequency response and bandwidth, are specified as function of the fiber length measured from the input end of the fiber. Analytical and numerical solutions are compared and good agreement between results is obtained.
References
Anderson, J.D. 1995. Computational Fluid Dynamics.New York, USA: McGraw-Hill..
Djordjevich, A., & Savović, S. 2000. Investigation of mode coupling in step index plastic optical fibers using the power flow equation. IEEE Photon. Technol. Lett., 12, pp. 1489-1491.
Drljača, B., Savović, S., & Djordjevich, A. 2009. Calculation of the Impulse Response of Step-Index Plastic Optical Fibers Using the Time-Dependent Power Flow Equation. Acta Phys. Pol. A, 116, pp. 658-660.
Drljača, B., Djordjevich, A., & Savović, S. 2012. Frequency response in step-index plastic optical fibers obtained by numerical solution of the time-dependent power flow equation. Optics and Laser Technology, 44(6), pp. 1808-1812.
Gloge, D. 1973. Impulse Response of Clad Optical Multimode Fibers. Bell Syst. Tech. J., 52, pp. 801-816.
Gloge, D. 1972. Optical power flow in multimode fibers. Bell Syst. Tech. J., 51, pp. 1767-1783.
Golowich, S.E., White, W., Reed, W.A., & Knudsen, E. 2003. Quantitative estimates of mode coupling and differential modal attenuation in perfluorinated graded-index plastic optical fiber. Journal of Lightwave Technology, 21(1), pp. 111-121. doi:10.1109/JLT.2003.808668.
Green, P.E. 1996. Optical networking update. IEEE Journal on Selected Areas in Communications, 14(5), pp. 764-779. doi:10.1109/49.510902.
Ishigure, T., Kano, M., & Koike, Y. 2000. . J. Lightwave Technol, 18, pp. 959-965.
Koeppen, C., Shi, R.F., Chen, W.D., & Garito, A.F. 1998. . J. Opt. Soc. Am. B, 15, pp. 727-739.
Koike, Y. 2015. Fundamentals of Plastic Optical Fibers.Weinheim, Germany: Wiley-VCH.
Olshansky, R. 1975. Mode Coupling Effects in Graded-index Optical Fibers. Appl Opt, 14(4), pp. 935-45. pmid:20135002.
Savović, S., & Djordjevich, A. 2004. Influence of numerical aperture on mode coupling in step-index plastic optical fibers. Appl Opt, 43(29), pp. 5542-6. pmid:15508612.
Savović, S., Djordjevich, A., Tse, P.W., Zubia, J., Mateo, J., & Losada, M.A. 2010. Determination of the width of the output angular power distribution in step index multimode optical fibers. J. Opt., 12(115405), p. 5.
Savović, S., Drljača, B., Kovačević, M.S., Djordjevich, A., Bajić, J.S., Stupar, D.Z., & Stepniak, G. 2014. Frequency response and bandwidth in low-numerical-aperture step-index plastic optical fibers. Appl Opt, 53(30), pp. 6999-7003. pmid:25402786.
Savović, S., Kovačević, M.S., Djordjevich, A., Bajić, J.S., Stupar, D.Z., & Stepniak, G. 2014. Mode coupling in low NA plastic optical fibers,. Opt. Laser Technol, 60, pp. 85-89.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.