ON THE STARK BROADENING OF Ar VII SPECTRAL LINES

  • Milan S. Dimitrijević 1. Astronomical Observatory, Belgrade, Serbia 2. IHIS – Techno Experts, Zemun, Serbia 3. LERMA, Observatoire de Paris,5 Place Jules Janssen, F-92195 Meudon Cedex, France
  • Sylvie Sahal-Bréchot LERMA, Observatoire de Paris,5 Place Jules Janssen, F-92195 Meudon Cedex, France
Keywords: line profiles, atomic processes, atomic data, Stark broadening,

Abstract


Stark broadening parameters, full width at half maximum of spectral line and shift, have been calculated for 3 spectral lines of Ar VII, for broadening by electron, proton, and He III impacts. For calculations, the semiclassical perturbation approach in the impact approximation has been used. The results are provided for temperatures from 20 000 K to 500 000 K and for an electron density of 1017 cm-3. Obtained results will be included in the STARK-B database which is also included in Virtual atomic and molecular data center (VAMDC).

Author Biographies

Milan S. Dimitrijević, 1. Astronomical Observatory, Belgrade, Serbia 2. IHIS – Techno Experts, Zemun, Serbia 3. LERMA, Observatoire de Paris,5 Place Jules Janssen, F-92195 Meudon Cedex, France
Naučni savetnik - Research professor
Sylvie Sahal-Bréchot, LERMA, Observatoire de Paris,5 Place Jules Janssen, F-92195 Meudon Cedex, France
Research Professor Emeritus

References

Bates, D.R., & Damgaard, A. 1949. The Calculation of the Absolute Strengths of Spectral Lines. Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences, 242(842), pp. 101-122.

Beauchamp, A., Wesemael, F., & Bergeron, P. 1997. Spectroscopic Studies of DB White Dwarfs: Improved Stark Profiles for Optical Transitions of Neutral Helium. Astrophysical Journal Supplement, 108, pp. 559-573.

Dimitrijevic, M.S., & Csillag, L. 2004. On the Stark broadening of the 537.8 nm and 441.6 nm Cd+ lines excited in a hollow cathode laser discharge. Applied Physics B: Lasers and Optics, 78(2), pp. 221-223. doi:10.1007/s00340-003-1368-3

Dimitrijević, M.S., & Konjević, N. 1980. Stark widths of doubly- and triply-ionized atom lines. Journal of Quantitative Spectroscopy & Radiative Transfer, 24, pp. 451-459.

Dimitrijević, M.S., & Kršljanin, V. 1986. Electron-impact shifts of ion lines: Modified semiempirical approach. Astronomy and Astrophysics, 165, pp. 269-274.

Dimitrijević, M.S., & Popović, L.Č. 2001. Modified Semiempirical Method,. Journal of Applied Spectroscopy, 68(6), pp. 893-901. doi:10.1023/A:1014396826047

Dimitrijević, M.S., & Sahal-Bréchot, S. 1984. Stark broadening of neutral helium lines. Journal of Quantitative Spectroscopy & Radiative Transfer, 31, pp. 301-313.

Dimitrijević, M.S., & Sahal-Bréchot, S. 1996. Stark broadening of Li II spectral lines. Physica Scripta, 54, pp. 50-55.

Dimitrijević, M.S., & Sahal-Bréchot, S. 2014. On the Application of Stark Broadening Data Determined with a Semiclassical Perturbation Approach. Atoms, 2, pp. 357-377.

Dimitrijević, M.S., Sahal-Bréchot, S., & Bommier, V. 1991. Stark broadening of spectral lines of multicharged ions of astrophysical interest. I - C IV lines. Astronomy and Astrophysics Supplement Series, 89, pp. 581-590.

Dubernet, M.L., Antony, B.K., Ba, Y.A., & et al., 2016. The virtual atomic and molecular data centre (VAMDC) consortium. Journal of Physics B: Atomic, Molecular and Optical Physics, 49(7). 074003.

Dubernet, M.L., Boudon, V., Culhane, J.L., & et al., 2010. Virtual atomic and molecular data centre. Journal of Quantitative Spectroscopy & Radiative Transfer, 111(15), pp. 2151-2159.

Dufour, P., Nessib, B.N., Sahal-Bréchot, S., & Dimitrijević, M.S. 2011. Stark Broadening of Carbon and Oxygen Lines in Hot DQ White Dwarf Stars: Recent Results and Applications. Baltic Astronomy, 20, pp. 511-515.

Fleurier, C., Sahal-Bréchot, S., & Chapelle, J. 1977. Stark profiles of some ion lines of alkaline earth elements. Journal of Quantitative Spectroscopy and Radiative Transfer, 17, pp. 595-603.

Gornushkin, I.B., King, L.A., Smith, B.W., Omenetto, N., & Winefordner, J.D. 1999. Line broadening mechanisms in the low pressure laser-induced plasma. Spectrochimica Acta, Part B: Atomic Spectroscopy, 54(8), pp. 1207-1217.

Griem, H.R. 1974. Spectral line broadening by plasmas.New York: Academic Press, Inc.

Hoffman, J., Szymanski, Z., & Azharonok, V. 2006. Plasma Plume Induced During Laser Welding of Magnesium Alloys. . In: AIP Conference Proceedings. , pp. 469-472 812,

Konjević, N. 1999, Plasma broadening and shifting of nonhydrogenic spectral lines: present status and applications, Physics Reports, 316 (6), 339–401.

Milovanović, N., Dimitrijević, M.S., Popović, L.Č., & Simić, Z. 2004. Importance of collisions with charged particles for stellar UV line shapes: Cd III. Astronomy and Astrophysics, 417, pp. 375-380.

Oertel, G.K., & Shomo, L.P. 1968. Tables for the Calculation of Radial Multipole Matrix Elements by the Coulomb Approximation. Astrophysical Journal Supplement, 16, pp. 175-218.

Rauch, T., Ziegler, M., Werner, K., & et al., 2007. High-resolution FUSE and HST ultraviolet spectroscopy of the white dwarf central star of Sh 2-216. Astronomy and Astrophysics, 1, pp. 317-329.

Rixon, G., Dubernet, M.L., Piskunov, N., & et al., 2011. VAMDC: The Virtual Atomic and Molecular Data Centre: A New Way to Disseminate Atomic and Molecular Data-VAMDC Level 1 Release. . In: AIP Conference Proceedings. , pp. 107-115 1344.

Sahal-Bréchot, S. 1969. Impact theory of the broadening and shift of spectral lines due to electrons and ions in a plasma. Astronomy and Astrophysics, 1, pp. 91-123.

Sahal-Bréchot, S. 1969. Impact theory of the broadening and shift of spectral lines due to electrons and ions in a plasma. Astronomy and Astrophysics, 2, pp. 322-354. (continued).

Sahal-Bréchot, S. 1974. Stark broadening of isolated lines in the impact approximation. Astronomy and Astrophysics, 35, pp. 319-321.

Sahal-Bréchot, S. 1991. Broadening of ionic isolated lines by interactions with positively charged perturbers in the quasistatic limit. Astronomy and Astrophysics, 245, pp. 322-330.

Sahal-Bréchot, S., Dimitrijević, M.S., & Nessib, B.N. 2014. Widths and Shifts of Isolated Lines of Neutral and Ionized Atoms Perturbed by Collisions With Electrons and Ions: An Outline of the Semiclassical Perturbation (SCP) Method and of the Approximations Used for the Calculations. Atoms, 2, pp. 225-252.

Sahal-Bréchot, S., Dimitrijević, M.S., & Moreau, N. 2017. STARK-B database.Observatory of Paris, LERMA / Astronomical Observatory of Belgrade. Retrieved from http://starkb.obspm.fr.

Sahal-Bréchot, S., Dimitrijević, M.S., Moreau, N., & Nessib, B.N. 2015. The STARK-B database VAMDC node: A repository for spectral line broadening and shifts due to collisions with charged particles. Physica Scripta, 50, p. 8. 054008.

Saloman, E.B. 2010. Energy Levels and Observed Spectral Lines of Ionized Argon, Ar II through Ar XVIII. Journal of Physical and Chemical Reference Data, 39(0331), p. 1.

Simić, Z., Dimitrijević, M.S., & Kovačević, A. 2009. Stark broadening of spectral lines in chemically peculiar stars: Te I lines and recent calculations for trace elements. New Astronomy Review, 53(7-10), pp. 246-251.

Simić, Z., Dimitrijević, M.S., Milovanović, N., & Sahal-Bréchot, S. 2005. a, Stark broadening of Cd I spectral lines. Astronomy and Astrophysics, 441(1), pp. 391-393.

Simic, Z., Dimitrijevic, M.S., Popovic, L.C., & Dacic, M.D. 2005. Stark Broadening of F III Lines in Laboratory and Stellar Plasma. Journal of Applied Spectroscopy, 72(3), pp. 443-446. doi:10.1007/s10812-005-0095-4

Simić, Z., Dimitrijević, M.S., Popović, L.Č., & Dačić, M. 2006. Stark broadening parameters for Cu III, Zn III and Se III lines in laboratory and stellar plasma. New Astronomy, 12(3), pp. 187-191.

Sorge, S., Wierling, A., Röpke, G., Theobald, W., Sauerbrey, R., & Wilhein, T. 2000. Diagnostics of a laser-induced dense plasma by hydrogen like carbon spectra. Journal of Physics B: Atomic, Molecular and Optical Physics, 33(16), pp. 2983-3000. doi:10.1088/0953-4075/33/16/304

Tankosić, D., Popović, L.Č., & Dimitrijević, M.S. 2003. The electron-impact broadening parameters for Co III spectral lines. Astronomy and Astrophysics, 399, pp. 795-797.

Taresch, G., Kudritzki, R.P., Hurwitz, M., & et al., 1997. Quantitative analysis of the FUV, UV and optical spectrum of the O3 star HD 93129A. Astronomy and Astrophysics, 321, pp. 531-548.

Torres, J., van de Sande, M.J., van der Mullen, J.J.A.M., Gamero, A., & Sola, A. 2006. Stark broadening for simultaneous diagnostics of the electron density and temperature in atmospheric microwave discharges. Spectrochimica Acta, Part B: Atomic Spectroscopy, 61(1), pp. 58-68.

van Regemorter, H., Binh, H.D., & Prud'homme, M. 1979. Radial transition integrals involving low or high effective quantum numbers in the Coulomb approximation. Journal of Physics B: Atomic, Molecular and Optical Physics, 12, pp. 1053-1061.

Werner, K., Rauch, T., & Kruk, J.W. 2007. Discovery of photospheric argon in very hot central stars of planetary nebulae and white dwarfs. Astronomy and Astrophysics, 466, pp. 317-322.

Griem, H.R. 1992. Plasma spectroscopy in inertial confinement fusion and soft x-ray laser research. Physics of Fluids, 4(7), str. 2346-2361.

Published
2017/07/15
Section
Original Scientific Paper