PREPARATION OF SILVER AND COPPER NANOPARTICLES IN PRESENCE OF ASCORBIC ACID AND INVESTIGATION OF THEIR ANTIBACTERIAL ACTIVITY

  • Bojana Laban Faculty of Natural Science and Mathematics, University of Priština, Kosovska Mitrovica, Serbia
  • Milena Košanin
  • Goran Isić
  • Uroš Ralević
  • Mirjana Marković
  • Anja Jokić
  • Vesna Vasić
Keywords: Silver nanoparticles, copper nanoparticles, antibacterial activity,

Abstract


In this study, we present a synthesis of silver and copper nanoparticles (NPs) using ascorbic acid as stabilizing and sodium borohydride as reducing agents, respectively. Four colloidal dispersions were obtained, two of them additionally stabilized by gelatin. They were characterized by UV-Vis, AFM, DLS and zeta potential measurements.  The size of both silver and copper NPs, determined by AFM measurements, was 10 nm before, and 15 nm after stabilization with gelatin. Antibacterial activity of synthesized NPs was tested using series of gram positive and gram negative bacteria. It was found that Ag and Cu NPs showed antibacterial activity in all cases.

 

References

Amendola, V., Bakr, O.M., & Stellacci, F. 2010. A Study of the Surface Plasmon Resonance of Silver Nanoparticles by the Discrete Dipole Approximation Method: Effect of Shape, Size, Structure, and Assembly. Plasmonics, 5, pp. 85-97.

Austin, L.A., Mackey, M.A., Dreaden, E.C., & El-Sayed, M.A. 2014. The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Arch. Toxicol., 88(7), pp. 1391-417. pmid:24894431

Chekin, F., & Ghasemi, S. 2014. Silver nanoparticles prepared in presence of ascorbic acid and gelatin, and their electrocatalytic application. Bulletin of Materials Science, 37, pp. 1433-1437.

Chicea, D. 2014. Using AFM Topography Measurements In Nanoparticle Sizing. Romanian Reports in Physics, 66, pp. 778-787.

Daniel, M., & Astruc, D. 2004. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev., 104(1), pp. 293-346. pmid:14719978

Dong, X., Ji, X., Wu, H., Zhao, L., Li, J., & Yang, W. 2009. Shape Control of Silver Nanoparticles by Stepwise Citrate Reduction. The Journal of Physical Chemistry C, 113, pp. 6573-6576.

Ehsani, A., Jaleh, B., & Nasrollahzadeh, M. 2014. Electrochemical properties and electrocatalytic activity of conducting polymer/copper nanoparticles supported on reduced graphene oxide composite. Journal of Power Sources, 257, pp. 300-307.

Hoo, C.M., Starostin, N., West, P., & Mecartney, M.L. 2008. A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions. Journal of Nanoparticle Research, 10(S1), pp. 89-96. doi:10.1007/s11051-008-9435-7

Hu, J.-., Chen, Q., Xie, Z.-., Han, G.-., Wang, R.-., Ren, B., . . . Tian, Z.-. 2004. A Simple and Effective Route for the Synthesis of Crystalline Silver Nanorods and Nanowires. Advanced Functional Materials, 14(2), pp. 183-189. doi:10.1002/adfm.200304421

Kelly, K.L., Coronado, E., Zhao, L.L., & Schatz, G.C. 2003. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. The Journal of Physical Chemistry B, 107, pp. 668-677.

Klapetek, P., Valtr, M., Nečas, D., Salyk, O., & Dzik, P. 2011. Atomic force microscopy analysis of nanoparticles in non-ideal conditions. Nanoscale Research Letters, 6(514).

Laban, B., Vodnik, V., Vujačić, A., Sovilj, S.P., Jokić, A.B., & Vasić, V. 2013. Spectroscopic and Fluorescence Properties of Silver-Dye Composite Nanoparticles. Russian Journal of Physical Chemistry A, 87, pp. 2219-2224.

Laban, B., Vodnik, V., Dramićanin, M., Novaković, M., Bibić, N., Sovilj, S.P., & Vasić, V.M. 2014. Mechanism and Kinetics of J-Aggregation of Thiacyanine Dye in the Presence of Silver Nanoparticles. The Journal of Physical Chemistry C, 118, pp. 23393-23401.

Laban, B., Vodnik, V., & Vasić, V. 2015. Spectrophotometric observations of thiacyanine dye J-aggregation on citrate capped silver nanoparticles. Nanospectroscopy, 1, pp. 54-60.

Laban, B., Zeković, I., Vasić Anićijević, D., Marković, M., Vodnik, V., Luce, M., . . . Vasić, V. 2016. Mechanism of 3, 3′-Disulfopropyl-5, 5′-Dichlorothiacyanine Anion Interaction With Citrate-Capped Silver Nanoparticles: Adsorption and J-Aggregation. The Journal of Physical Chemistry C, 120, pp. 18066-18074.

Lee, Y., Choi, J., Lee, K.J., Stott, N.E., & Kim, D. 2008. Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics. Nanotechnology, 19(41), p. 415604. pmid:21832649. doi:10.1088/0957-4484/19/41/415604

Li, M., Cushing, S.K., & Wu, N. 2015. Plasmon-enhanced optical sensors: A review. Analyst, 140(2), pp. 386-406. pmid:25365823

Li, Y., Wu, Y., & Ong, B.S. 2005. Facile synthesis of silver nanoparticles useful for fabrication of high-conductivity elements for printed electronics. J. Am. Chem. Soc., 127(10), pp. 3266-7. pmid:15755129

Liz-Marzán, L.M. 2006. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir , 22(1), pp. 32-41. pmid:16378396

Lu, L.M., Zhang, X.B., Shen, G.L., & Yu, R.Q. 2012. Seed-mediated synthesis of copper nanoparticles on carbon nanotubes and their application in nonenzymatic glucose biosensors. Analytica Chimica Acta, 715, pp. 99-104.

Mahmoud, M.A., Chamanzar, M., Adibi, A., & El-Sayed, M.A. 2012. Effect of the dielectric constant of the surrounding medium and the substrate on the surface plasmon resonance spectrum and sensitivity factors of highly symmetric systems: Silver nanocubes. J. Am. Chem. Soc., 134(14), pp. 6434-42. pmid:22420824

Maria, K., Susmit, K., Rosaria, B., Simona, P., la Carola, T., Giovanni, B., . . . Athanassia, A. 2013. Electrical response from nanocomposite PDMS-Ag NPs generated by in situ laser ablation in solution. Nanotechnology, 24, p. 35707.

Mogensen, K.B., & Kneipp, K. 2014. Size-Dependent Shifts of Plasmon Resonance in Silver Nanoparticle Films Using Controlled Dissolution: Monitoring the Onset of Surface Screening Effects. The Journal of Physical Chemistry C, 118, pp. 28075-28083.

Mulvaney, P. 1996. Surface Plasmon Spectroscopy of Nanosized Metal Particles. Langmuir, 12, pp. 788-800.

Panacek, A., Kvítek, L., Prucek, R., Kolar, M., Vecerova, R., Pizúrova, N., . . . Zboril, R. 2006. Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity. J Phys Chem B, 110(33), pp. 16248-53. pmid:16913750

Qin, Y., Ji, X., Jing, J., Liu, H., Wu, H., & Yang, W. 2010. Size control over spherical silver nanoparticles by ascorbic acid reduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 372, pp. 172-176.

Ramyadevi, J., Jeyasubramanian, K., Marikani, A., Rajakumar, G., & Rahuman, A.A. 2012. Synthesis and antimicrobial activity of copper nanoparticles. Materials Letters, 71, pp. 114-116.

Salavati-Niasari, M., & Davar, F. 2009. Synthesis of copper and copper(I) oxide nanoparticles by thermal decomposition of a new precursor. Materials Letters, 63, pp. 441-443.

Song, J., Kim, H., Jang, Y., & Jang, J. 2013. Enhanced Antibacterial Activity of Silver/Polyrhodanine-Composite-Decorated Silica Nanoparticles. ACS Applied Materials & Interfaces, 5, pp. 11563-11568.

Sosa, I.O., Noguez, C., & Barrera, R.G. 2003. Optical Properties of Metal Nanoparticles with Arbitrary Shapes. The Journal of Physical Chemistry B, 107, pp. 6269-6275.

Tomaszewska, E., Soliwoda, K., Kadziola, K., Tkacz-Szczesna, B., Celichowski, G., Cichomski, M., Szmaja, W. & Grobelny, J. 2013. Detection Limits of DLS and UV-Vis Spectroscopy in Characterization of Polydisperse Nanoparticles Colloids. Journal of Nanomaterials, pp. 10. doi: 10.1155/2013/313081

Valodkar, M., Modi, S., Pal, A., & Thakore, S. 2011. Synthesis and anti-bacterial activity of Cu, Ag and Cu-Ag alloy nanoparticles: A green approach. Materials Research Bulletin, 46, pp. 384-389.

Walcarius, A., Minteer, S.D., Wang, J., Lin, Y., & Merkoçi, A. 2013. Nanomaterials for bio-functionalized electrodes: Recent trends. Journal of Materials Chemistry B, 1, pp. 4878-4908.

Wang, F., Widejko, R.G., Yang, Z., Nguyen, K.T., Chen, H., Fernando, L.P., . . . Anker, J.N. 2012. Surface-enhanced raman scattering detection of pH with silica-encapsulated 4-mercaptobenzoic acid-functionalized silver nanoparticles. Anal. Chem., 84(18), pp. 8013-9. pmid:22881392

Wang, H., Huang, Y., Tan, Z., & Hu, X. 2004. Fabrication and characterization of copper nanoparticle thin-films and the electrocatalytic behavior. Analytica Chimica Acta, 526, pp. 13-17.

Wiley, B.J., Im, S.H., Li, Z., McLellan, J., Siekkinen, A., & Xia, Y. 2006. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J Phys Chem B, 110(32), pp. 15666-75. pmid:16898709

Yacamán, M., Ascencio, J.A., Liu, H.B., & Gardea-Torresdey, J. 2001. Structure shape and stability of nanometric sized particles. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 19(4), p. 1091. doi:10.1116/1.1387089

Zain, N.M., Stapley, A.G.F., & Shama, G. 2014. Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications. Carbohydrate Polymers, 112, pp. 195-202.

Zhang, Q., Li, N., Goebl, J., Lu, Z., & Yin, Y. 2011. A systematic study of the synthesis of silver nanoplates: Is citrate a "magic" reagent?. J. Am. Chem. Soc., 133(46), pp. 18931-9. pmid:21999679

Zhang, Q., Uchaker, E., Candelaria, S.L., & Cao, G. 2013. Nanomaterials for energy conversion and storage. Chem Soc Rev, 42(7), pp. 3127-71. pmid:23455759

Zhu, H., Zhang, C., & Yin, Y. 2005. Novel synthesis of copper nanoparticles: Influence of the synthesis conditions on the particle size. Nanotechnology, 16(12), pp. 3079-3083. doi:10.1088/0957-4484/16/12/059

Published
2017/10/13
Section
Original Scientific Paper