INTERPOLATION LOGISTIC FUNCTION IN THE SURFACE POTENTIAL BASED MOSFET MODELING

  • Tijana Kevkić Faculty of Sciences and Mathematics
  • Vladica Stojanović Faculty of Sciences and Mathematics
Keywords: MOSFET modeling, Interpolation Logistic function, Surface potential, Parameters estimation,

Abstract


Introduction of the Interpolation Logistic (IL) function in an approximate Surface-Potential-Based MOSFET model has been proposed in this paper. This function can be precisely determined in accordance with different MOSFET device characteristics. The IL function also provides continual behavior of the surface potential in entire useful region of MOSFET operation. Unlike the approximate analytical models which can meet in literature, continual and smooth transition of the surface potential between weak and strong inversion region here is achieved without using of any empirical parameter. Furthermore, thanks to the IL function, speed and manner of that transition are controlled. The values obtained for the surface potential are verified extensively with the numerical data, and a great agreement is found for the MOSFET devices from different technology generations.

Author Biographies

Tijana Kevkić, Faculty of Sciences and Mathematics
physics
Vladica Stojanović, Faculty of Sciences and Mathematics
mathematics

References

Araújo, C. A. I., Schneider, M. C., & Galup-Montoro, C. 1995. An explicit physical model for the long-channel MOS transistor including small-signal parameters. Solid-State Electronics, 38(11), pp. 1945-1952. doi:10.1016/0038-1101(95)00023-m

Arora, N. 1993. MOSFET Models for VLSI Circuit Simulation.Vienna: Springer-Verlag. doi:10.1007/978-3-7091-9247-4

Chen, T. L., & Gildenblat, G. 2001. Analytical approximation for the MOSFET surface potential. Solid-State Electronics, 45(2), pp. 335-339. doi:10.1016/s0038-1101(00)00283-5

Eftimie, S., & Rusu, A. 2007. MOSFET model with simple extraction procedures suitable for sensitive analog simulations. Rom. J. Inf. Sci. Tech., 10, pp. 189-197.

Enz, C. C., Krummenacher, F., & Vittoz, E. A. 1995. An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications. Analog Integrated Circuits and Signal Processing, 8(1), pp. 83-114. doi:10.1007/bf01239381

Hossain, M., & Chowdhury, M. H. 2016. Comprehensive doping scheme for MOSFETs in ultra-low-power subthreshold circuits design. Microelectronics Journal, 52, pp. 73-79. doi:10.1016/j.mejo.2016.03.007

Kevkić, T., Stojanović, V., & Joksimović, D. 2017. Application of generalized logistic functions in surface-potential-based MOSFET modeling. Journal of Computational Electronics, 16(1), pp. 90-97. doi:10.1007/s10825-016-0935-x

Kevkic, T., Stojanovic, V., & Petkovic, D. 2016. Modification of transition's factor in the compact surface-potential-based MOSFET model. The University Thought - Publication in Natural Sciences, 6(2), pp. 55-60. doi:10.5937/univtho6-11360

Osrečki, Z. 2015. Compact MOSFET model.University of Zagreb. Thesis.

Prégaldiny, F., Lallement, C., van Langevelde, R., & Mathiot, D. 2004. An advanced explicit surface potential model physically accounting for the quantization effects in deep-submicron MOSFETs. Solid-State Electronics, 48(3), pp. 427-435. doi:10.1016/j.sse.2003.09.005

van Langevelde, R., & Klaassen, F. M. 2000. An explicit surface-potential-based MOSFET model for circuit simulation. Solid-State Electronics, 44(3), pp. 409-418. doi:10.1016/s0038-1101(99)00219-1

Published
2018/12/08
Section
Original Scientific Paper