SOME NEW RESULTS FOR REICH TYPE MAPPINGS ON CONE b-METRIC SPACES OVER BANACH ALGEBRAS
Abstract
The main purpose of this paper is to present some fixed point results concerning the generalized Reich type α-admissible mappings in cone b-metric spaces over Banach algebras. Our results are significant extensions and generalizations of resent results of N. Hussain at al. (2017) and many well-known results in abundant literature. We also gave an example that confirmed our results.
References
Du, W. 2010. A note on cone metric fixed point theory and its equivalence. Nonlinear Analysis: Theory, Methods and Applications, 72(5), pp. 2259-2261. doi:10.1016/j.na.2009.10.026
Huang, L., & Zhang, X. 2007. Cone metric spaces and fixed point theorems of contractive mappings. Journal of Mathematical Analysis and Applications, 332(2), pp. 1468-1476. doi:10.1016/j.jmaa.2005.03.087
Huang, H., & Radenović, S. 2016. Some fixed point results of generalized Lipschitz mappings on cone b-metric spaces over Banach algebras. J. Computational Analysis and Applications, 20(3), pp. 566-583.
Huang, H., & Radenović, S. 2015. Common fixed point theorems of generalized Lipschitz mappings in cone b-metric spaces over Banach algebras and applications. Journal of Nonlinear Sciences and Applications, 08(05), pp. 787-799. doi:10.22436/jnsa.008.05.29
Huang, H., & Radenović, S. 2015. Common fixed point theorems of generalized Lipschitz mappings in cone metric spaces over Banach algebras. Appl. Math. Inf. Sci., 9(6). pmid:2990
Huang, H., & Xu, S. 2013. Fixed point theorems of contractive mappings in cone b-metric spaces and applications. Fixed Point Theory and Applications, 2013(1), p. 112. doi:10.1186/1687-1812-2013-112
Huang, H., Radenovic, S., & Deng, G. 2017. A sharp generalization on cone b-metric space over Banach algebra. The Journal of Nonlinear Sciences and Applications, 10(02), pp. 429-435. doi:10.22436/jnsa.010.02.09
Hussain, N., Al-solami, A. M., & Kutbi, M. A. 2017. Fixed points of α-admissible mappings in cone b-metric spaces with Banach algebra. Journal of Mathematical Analysis, 8(2), pp. 89-97.
Kadelburg, Z., Radenović, S., & Rakočević, V. 2011. A note on the equivalence of some metric and cone metric fixed point results. Applied Mathematics Letters, 24(3), pp. 370-374. doi:10.1016/j.aml.2010.10.030
Kadelburg, Z., & Radenović, S. 2013. A note on various types of cones and fixed point results in cone metric spaces. Asian Journal of Mathematics and Applications, Article ID amma0104, 7 pages.
Liu, H., & Xu, S. 2013. Cone metric spaces with Banach algebras and fixed point theorems of generalized Lipschitz mappings. Fixed Point Theory and Applications, 2013(1), p. 320. doi:10.1186/1687-1812-2013-320
Malhotra, S. K., Sharma, J. B., & Shukla, S. 2015. Fixed points of α-admissible mappings in cone metric spaces with Banach algebra. International Journal of Analysis and Applications, 9(1), pp. 9-18.
Malhotra, S. K., Sharma, J. B., & Shukla, S. 2017. Fixed points of generalized Kannan type α-admissible mappings in cone metric spaces with Banach algebra. Theory and Applications of Mathematics and Computer Science, 7(1), pp. 1-13.
Nieto, J. J., & Rodríguez-López, R. 2005. Contractive Mapping Theorems in Partially Ordered Sets and Applications to Ordinary Differential Equations. Order, 22(3), pp. 223-239. doi:10.1007/s11083-005-9018-5
Reich, S. 1971. Some remarks concerning contraction mappings. Canadian Mathematical Bulletin, 14, pp. 121-124. doi:10.4153/cmb-1971-024-9
Rudin, W. 1991. Functional Analysis.New York: McGraw-Hill. 2nd edition.
Samet, B., Vetro, C., & Vetro, P. 2012. Fixed point theorems for -contractive type mappings. Nonlinear Analysis: Theory, Methods and Applications, 75(4), pp. 2154-2165. doi:10.1016/j.na.2011.10.014
Xu, S., & Radenović, S. 2015. Fixed point theorems of generalized Lipschitz mappings on cone metric spaces over Banach algebras without assumption of normality. Fixed Point Theory and Applications, 2014(1), p. 102. doi:10.1186/1687-1812-2014-102
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.