SOME NEW RESULTS FOR REICH TYPE MAPPINGS ON CONE b-METRIC SPACES OVER BANACH ALGEBRAS

  • Jelena Vujaković University of Pristina, Faculty of Sciences and Mathematics, Kosovska Mitrovica
  • Abba Auwalu Faculty of Sciences and Arts, Near East University, Nicosia, Turkey
  • Vesna Šešum-Čavić Vienna University of Technology, Austria
Keywords: Cone b-metric space, Banach algebra, α-admissible mapping, α-regular, Fixed point, c-sequence,

Abstract


The main purpose of this paper is to present some fixed point results concerning the generalized Reich type α-admissible mappings in cone b-metric spaces over Banach algebras. Our results are significant extensions and generalizations of resent results of N. Hussain at al. (2017) and many well-known results in abundant literature. We also gave an example that confirmed our results.

 

Author Biographies

Jelena Vujaković, University of Pristina, Faculty of Sciences and Mathematics, Kosovska Mitrovica
Department of mathematics
Abba Auwalu, Faculty of Sciences and Arts, Near East University, Nicosia, Turkey
Department of Mathematics
Vesna Šešum-Čavić, Vienna University of Technology, Austria
Institute of Computer Languages

References

Du, W. 2010. A note on cone metric fixed point theory and its equivalence. Nonlinear Analysis: Theory, Methods and Applications, 72(5), pp. 2259-2261. doi:10.1016/j.na.2009.10.026

Huang, L., & Zhang, X. 2007. Cone metric spaces and fixed point theorems of contractive mappings. Journal of Mathematical Analysis and Applications, 332(2), pp. 1468-1476. doi:10.1016/j.jmaa.2005.03.087

Huang, H., & Radenović, S. 2016. Some fixed point results of generalized Lipschitz mappings on cone b-metric spaces over Banach algebras. J. Computational Analysis and Applications, 20(3), pp. 566-583.

Huang, H., & Radenović, S. 2015. Common fixed point theorems of generalized Lipschitz mappings in cone b-metric spaces over Banach algebras and applications. Journal of Nonlinear Sciences and Applications, 08(05), pp. 787-799. doi:10.22436/jnsa.008.05.29

Huang, H., & Radenović, S. 2015. Common fixed point theorems of generalized Lipschitz mappings in cone metric spaces over Banach algebras. Appl. Math. Inf. Sci., 9(6). pmid:2990

Huang, H., & Xu, S. 2013. Fixed point theorems of contractive mappings in cone b-metric spaces and applications. Fixed Point Theory and Applications, 2013(1), p. 112. doi:10.1186/1687-1812-2013-112

Huang, H., Radenovic, S., & Deng, G. 2017. A sharp generalization on cone b-metric space over Banach algebra. The Journal of Nonlinear Sciences and Applications, 10(02), pp. 429-435. doi:10.22436/jnsa.010.02.09

Hussain, N., Al-solami, A. M., & Kutbi, M. A. 2017. Fixed points of α-admissible mappings in cone b-metric spaces with Banach algebra. Journal of Mathematical Analysis, 8(2), pp. 89-97.

Kadelburg, Z., Radenović, S., & Rakočević, V. 2011. A note on the equivalence of some metric and cone metric fixed point results. Applied Mathematics Letters, 24(3), pp. 370-374. doi:10.1016/j.aml.2010.10.030

Kadelburg, Z., & Radenović, S. 2013. A note on various types of cones and fixed point results in cone metric spaces. Asian Journal of Mathematics and Applications, Article ID amma0104, 7 pages.

Liu, H., & Xu, S. 2013. Cone metric spaces with Banach algebras and fixed point theorems of generalized Lipschitz mappings. Fixed Point Theory and Applications, 2013(1), p. 320. doi:10.1186/1687-1812-2013-320

Malhotra, S. K., Sharma, J. B., & Shukla, S. 2015. Fixed points of α-admissible mappings in cone metric spaces with Banach algebra. International Journal of Analysis and Applications, 9(1), pp. 9-18.

Malhotra, S. K., Sharma, J. B., & Shukla, S. 2017. Fixed points of generalized Kannan type α-admissible mappings in cone metric spaces with Banach algebra. Theory and Applications of Mathematics and Computer Science, 7(1), pp. 1-13.

Nieto, J. J., & Rodríguez-López, R. 2005. Contractive Mapping Theorems in Partially Ordered Sets and Applications to Ordinary Differential Equations. Order, 22(3), pp. 223-239. doi:10.1007/s11083-005-9018-5

Reich, S. 1971. Some remarks concerning contraction mappings. Canadian Mathematical Bulletin, 14, pp. 121-124. doi:10.4153/cmb-1971-024-9

Rudin, W. 1991. Functional Analysis.New York: McGraw-Hill. 2nd edition.

Samet, B., Vetro, C., & Vetro, P. 2012. Fixed point theorems for -contractive type mappings. Nonlinear Analysis: Theory, Methods and Applications, 75(4), pp. 2154-2165. doi:10.1016/j.na.2011.10.014

Xu, S., & Radenović, S. 2015. Fixed point theorems of generalized Lipschitz mappings on cone metric spaces over Banach algebras without assumption of normality. Fixed Point Theory and Applications, 2014(1), p. 102. doi:10.1186/1687-1812-2014-102

Published
2018/12/15
Section
Original Scientific Paper