CHARACTERIZATION OF NEW SYNTHESIZED Fe2O3 NANOPARTICLES AND THEIR APPLICATION AS DETECTION SIGNAL AMPLIFIERS IN HERBICIDE BENTAZONE ELECTROANALYTICAL DETERMINATION
Abstract
The iron oxide nanoparticles (Fe2O3 NPs) were synthesized from two different iron salts by solid-state synthesis method. The synthesized powder of Fe2O3 NPs is soluble in water, and the colloidal dispersion was characterized by TEM, FTIR, UV-Vis spectroscopy and zeta potential measurements. Obtained NPs are spherical in shape with narrow particle size distribution and an average diameter of 3 nm. Further, the possible application of Fe2O3 NPs was proposed, due to significant electroanalytical signal amplification in the determination of herbicide bentazone in natural river water.
References
Abdulwahab, K. O., Malik, M. A., O’Brien, P., Timco, G. A., Tuna, F., Muryn, C. A., Winpenny, R. E. P., Pattrick, R. A. D., Coker, V. S. , & Arenholz, E. 2014. A One-Pot Synthesis of Monodispersed Iron Cobalt Oxide and Iron Manganese Oxide Nanoparticles from Bimetallic Pivalate Clusters. Chemistry of Materials, 26(2), pp. 999-1013. doi:10.1021/cm403047v
Ali, A., Zafar, H., Zia, M., ul Haq, I., Phull, A. R., Ali, J. S., & Hussain, A. 2016. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnology, Science and Applications, Volume 9, pp. 49-67. doi:10.2147/nsa.s99986
Bashir, M., Riaz, S., & Naseem, S. 2015. Effect of pH on Ferromagnetic Iron Oxide Nanoparticles. Materials Today: Proceedings, 2(10), pp. 5664-5668. doi:10.1016/j.matpr.2015.11.106
Chen, K., He, J., Li, Y., Cai, X., Zhang, K., Liu, T., Hu, Y., Lin, D., Kong, L. & Liu, J. 2017. Removal of cadmium and lead ions from water by sulfonated magnetic nanoparticle adsorbents. Journal of Colloid and Interface Science, 494, pp. 307-316. doi:10.1016/j.jcis.2017.01.082
Chen, S. Y., Chen, W. H., & Shih, C. J. 2008. Heavy metal removal from wastewater using zero-valent iron nanoparticles. Water Science and Technology, 58(10), pp. 1947-1954. doi:10.2166/wst.2008.556
Garrido, M. E., Lima, C. J. L., Delerue-Matos, M. C. & Brett, M. O. A. 1998. Electrochemical oxidation of bentazon at a glassy carbon electrode: Application to the determination of a commercial herbicide. Talanta, 46, 1131-1135.
Hasanzadeh, M., Shadjou, N., & de la Guardia, M. 2015. Iron and iron-oxide magnetic nanoparticles as signal-amplification elements in electrochemical biosensing. TrAC Trends in Analytical Chemistry, 72, pp. 1-9. doi:10.1016/j.trac.2015.03.016
Huang, K., & Ehrman, S. H. 2007. Synthesis of Iron Nanoparticles via Chemical Reduction with Palladium Ion Seeds. Langmuir, 23(3), pp. 1419-1426. doi:10.1021/la0618364
Jevtić, S., Stefanović, A., Stanković, D. M., Pergal, M. V., Ivanović, A. T., Jokić, A., & Petković, B. B. 2018. Boron-doped diamond electrode — A prestigious unmodified carbon electrode for simple and fast determination of bentazone in river water samples. Diamond and Related Materials, 81, pp. 133-137. doi:10.1016/j.diamond.2017.12.009
Karami, H. 2010. Synthesis and Characterization of Iron Oxide Nanoparticles by Solid State Chemical Reaction Method. Journal of Cluster Science, 21(1), pp. 11-20. doi:10.1007/s10876-009-0278-x
Lei, J., & Ju, H. 2012. Signal amplification using functional nanomaterials for biosensing. Chemical Society Reviews, 41(6), p. 2122. doi:10.1039/c1cs15274b
Li, F., Xu, J., Yu, X., Chen, L., Zhu, J., Yang, Z., & Xin, X. 2002. One-step solid-state reaction synthesis and gas sensing property of tin oxide nanoparticles. Sensors and Actuators B: Chemical, 81(2-3), pp. 165-169. doi:10.1016/s0925-4005(01)00947-9
Li, S., Wang, W., Liang, F., & Zhang, W. 2017. Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application. Journal of Hazardous Materials, 322, pp. 163-171. doi:10.1016/j.jhazmat.2016.01.032
Liao, Y., He, L., Huang, J., Zhang, J., Zhuang, L., Shen, H., & Su, C. 2010. Magnetite Nanoparticle-Supported Coordination Polymer Nanofibers: Synthesis and Catalytic Application in Suzuki-Miyaura Coupling. ACS Applied Materials & Interfaces, 2(8), pp. 2333-2338. doi:10.1021/am100354b
Ling, D., Lee, N., & Hyeon, T. 2015. Chemical Synthesis and Assembly of Uniformly Sized Iron Oxide Nanoparticles for Medical Applications. Accounts of Chemical Research, 48(5), pp. 1276-1285. doi:10.1021/acs.accounts.5b00038
Lu, J., Yang, S., Ng, K. M., Su, C., Yeh, C., Wu, Y., & Shieh, D. 2007. Solid-state synthesis of monocrystalline iron oxide nanoparticle based ferrofluid suitable for magnetic resonance imaging contrast application. Nanotechnology, 18(28), pp. 289001-289001. doi:10.1088/0957-4484/18/25/289001
Manuela, G. E., Costa, L. J. L., M. Delerue-Matos, C., & Maria, O. B. A. 1998. Electrochemical oxidation of bentazon at a glassy carbon electrodeApplication to the determination of a commercial herbicide. Talanta, 46(5), pp. 1131-1135. doi:10.1016/s0039-9140(97)00380-9
Nguyen, H. L., Howard, L. E. M., Stinton, G. W., Giblin, S. R., Tanner, B. K., Terry, I., Hughes, A. K., Ross, I. M., Serres, A. & Evans, J. S. O. 2006. Synthesis of Size-Controlled fcc and fct FePt Nanoparticles. Chemistry of Materials, 18(26), pp. 6414-6424. doi:10.1021/cm062127e
Ponder, S. M., Darab, J. G., Bucher, J., Caulder, D., Craig, I., Davis, L., Edelstein, N., Lukens, W., Nitsche, H., Rao, L., Shuh, D. K. & Mallouk, T. E. 2001. Surface Chemistry and Electrochemistry of Supported Zerovalent Iron Nanoparticles in the Remediation of Aqueous Metal Contaminants. Chemistry of Materials, 13(2), pp. 479-486. doi:10.1021/cm000288r
Rahemi, V., Garrido, J. M. P. J., Borges, F., Brett, C. M. A., & Garrido, E. M. P. J. 2013. Electrochemical Determination of the Herbicide Bentazone Using a Carbon Nanotube β-Cyclodextrin Modified Electrode. Electroanalysis, 25, pp. 2360-2366. doi:10.1002/elan.201300230
Rajput, S., Pittman, C. U., & Mohan, D. 2016. Magnetic magnetite (Fe 3 O 4 ) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. Journal of Colloid and Interface Science, 468, pp. 334-346. doi:10.1016/j.jcis.2015.12.008
Rani, S., & Varma, G. D. 2015. Superparamagnetism and metamagnetic transition in Fe3O4 nanoparticles synthesized via co-precipitation method at different pH. Physica B: Condensed Matter, 472, pp. 66-77. doi:10.1016/j.physb.2015.05.016
Saif, S., Tahir, A., & Chen, Y. 2016. Green Synthesis of Iron Nanoparticles and Their Environmental Applications and Implications. Nanomaterials, 6(11), p. 209. doi:10.3390/nano6110209
Sayed, F. N., & Polshettiwar, V. 2015. Facile and Sustainable Synthesis of Shaped Iron Oxide Nanoparticles: Effect of Iron Precursor Salts on the Shapes of Iron Oxides. Scientific Reports, 5(1). doi:10.1038/srep09733
Sodipo, B. K., & Aziz, A. A. 2016. Recent advances in synthesis and surface modification of superparamagnetic iron oxide nanoparticles with silica. Journal of Magnetism and Magnetic Materials, 416, pp. 275-291. doi:10.1016/j.jmmm.2016.05.019
Sun, Y., Li, X., Cao, J., Zhang, W., & Wang, H. P. 2006. Characterization of zero-valent iron nanoparticles. Advances in Colloid and Interface Science, 120(1-3), pp. 47-56. doi:10.1016/j.cis.2006.03.001
Tang, B., Wang, G., Zhuo, L., Ge, J., & Cui, L. 2006. Facile Route to α-FeOOH and α-Fe2O3 Nanorods and Magnetic Property of α-Fe2O3 Nanorods. ChemInform, 37(38). doi:10.1002/chin.200638198
Wu, Q., Zhao, G., Feng, C., Wang, C., & Wang, Z. 2011. Preparation of a graphene-based magnetic nanocomposite for the extraction of carbamate pesticides from environmental water samples. Journal of Chromatography A, 1218(44), pp. 7936-7942. doi:10.1016/j.chroma.2011.09.027
Zanganeh, S., Hutter, G., Spitler, R., Lenkov, O., Mahmoudi, M., Shaw, A., Pajarinen, J. S., Nejadnik, H., Goodman, S., Moseley, M., Coussens, L. M. & Daldrup-Link, H. E. 2016. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nature Nanotechnology, 11(11), pp. 986-994. doi:10.1038/nnano.2016.168
Zhu, H., Jia, Y., Wu, X., & Wang, H. 2009. Removal of arsenic from water by supported nano zero-valent iron on activated carbon. Journal of Hazardous Materials, 172(2-3), pp. 1591-1596. doi:10.1016/j.jhazmat.2009.08.031
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.