CHARACTERIZATION OF NEW SYNTHESIZED Fe2O3 NANOPARTICLES AND THEIR APPLICATION AS DETECTION SIGNAL AMPLIFIERS IN HERBICIDE BENTAZONE ELECTROANALYTICAL DETERMINATION

  • Anja Jokić Faculty of Natural Science and Mathematics, University of Priština, Kosovska Mitrovica, Serbia
  • Branka Petković Faculty of Natural Science and Mathematics, University of Priština, Kosovska Mitrovica, Serbia
  • Sonja Jevtić Faculty of Natural Science and Mathematics, University of Priština, Kosovska Mitrovica, Serbia
  • Vesna Vasić Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, Belgrade, Serbia
  • Bojana Laban Faculty of Natural Science and Mathematics, University of Priština, Kosovska Mitrovica, Serbia
Keywords: Iron oxide, Nanoparticles, Solid-state, Herbicide bentazone, Electroanalysis,

Abstract


The iron oxide nanoparticles (Fe2O3 NPs) were synthesized from two different iron salts by solid-state synthesis method. The synthesized powder of Fe2O3 NPs is soluble in water, and the colloidal dispersion was characterized by TEM, FTIR, UV-Vis spectroscopy and zeta potential measurements. Obtained NPs are spherical in shape with narrow particle size distribution and an average diameter of 3 nm. Further, the possible application of Fe2O3 NPs was proposed, due to significant electroanalytical signal amplification in the determination of herbicide bentazone in natural river water.


References

Abdulwahab, K. O., Malik, M. A., O’Brien, P., Timco, G. A., Tuna, F., Muryn, C. A., Winpenny, R. E. P., Pattrick, R. A. D., Coker, V. S. , & Arenholz, E. 2014. A One-Pot Synthesis of Monodispersed Iron Cobalt Oxide and Iron Manganese Oxide Nanoparticles from Bimetallic Pivalate Clusters. Chemistry of Materials, 26(2), pp. 999-1013. doi:10.1021/cm403047v

Ali, A., Zafar, H., Zia, M., ul Haq, I., Phull, A. R., Ali, J. S., & Hussain, A. 2016. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnology, Science and Applications, Volume 9, pp. 49-67. doi:10.2147/nsa.s99986

Bashir, M., Riaz, S., & Naseem, S. 2015. Effect of pH on Ferromagnetic Iron Oxide Nanoparticles. Materials Today: Proceedings, 2(10), pp. 5664-5668. doi:10.1016/j.matpr.2015.11.106

Chen, K., He, J., Li, Y., Cai, X., Zhang, K., Liu, T., Hu, Y., Lin, D., Kong, L. & Liu, J. 2017. Removal of cadmium and lead ions from water by sulfonated magnetic nanoparticle adsorbents. Journal of Colloid and Interface Science, 494, pp. 307-316. doi:10.1016/j.jcis.2017.01.082

Chen, S. Y., Chen, W. H., & Shih, C. J. 2008. Heavy metal removal from wastewater using zero-valent iron nanoparticles. Water Science and Technology, 58(10), pp. 1947-1954. doi:10.2166/wst.2008.556

Garrido, M. E., Lima, C. J. L., Delerue-Matos, M. C. & Brett, M. O. A. 1998. Electrochemical oxidation of bentazon at a glassy carbon electrode: Application to the determination of a commercial herbicide. Talanta, 46, 1131-1135.

Hasanzadeh, M., Shadjou, N., & de la Guardia, M. 2015. Iron and iron-oxide magnetic nanoparticles as signal-amplification elements in electrochemical biosensing. TrAC Trends in Analytical Chemistry, 72, pp. 1-9. doi:10.1016/j.trac.2015.03.016

Huang, K., & Ehrman, S. H. 2007. Synthesis of Iron Nanoparticles via Chemical Reduction with Palladium Ion Seeds. Langmuir, 23(3), pp. 1419-1426. doi:10.1021/la0618364

Jevtić, S., Stefanović, A., Stanković, D. M., Pergal, M. V., Ivanović, A. T., Jokić, A., & Petković, B. B. 2018. Boron-doped diamond electrode — A prestigious unmodified carbon electrode for simple and fast determination of bentazone in river water samples. Diamond and Related Materials, 81, pp. 133-137. doi:10.1016/j.diamond.2017.12.009

Karami, H. 2010. Synthesis and Characterization of Iron Oxide Nanoparticles by Solid State Chemical Reaction Method. Journal of Cluster Science, 21(1), pp. 11-20. doi:10.1007/s10876-009-0278-x

Lei, J., & Ju, H. 2012. Signal amplification using functional nanomaterials for biosensing. Chemical Society Reviews, 41(6), p. 2122. doi:10.1039/c1cs15274b

Li, F., Xu, J., Yu, X., Chen, L., Zhu, J., Yang, Z., & Xin, X. 2002. One-step solid-state reaction synthesis and gas sensing property of tin oxide nanoparticles. Sensors and Actuators B: Chemical, 81(2-3), pp. 165-169. doi:10.1016/s0925-4005(01)00947-9

Li, S., Wang, W., Liang, F., & Zhang, W. 2017. Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application. Journal of Hazardous Materials, 322, pp. 163-171. doi:10.1016/j.jhazmat.2016.01.032

Liao, Y., He, L., Huang, J., Zhang, J., Zhuang, L., Shen, H., & Su, C. 2010. Magnetite Nanoparticle-Supported Coordination Polymer Nanofibers: Synthesis and Catalytic Application in Suzuki-Miyaura Coupling. ACS Applied Materials & Interfaces, 2(8), pp. 2333-2338. doi:10.1021/am100354b

Ling, D., Lee, N., & Hyeon, T. 2015. Chemical Synthesis and Assembly of Uniformly Sized Iron Oxide Nanoparticles for Medical Applications. Accounts of Chemical Research, 48(5), pp. 1276-1285. doi:10.1021/acs.accounts.5b00038

Lu, J., Yang, S., Ng, K. M., Su, C., Yeh, C., Wu, Y., & Shieh, D. 2007. Solid-state synthesis of monocrystalline iron oxide nanoparticle based ferrofluid suitable for magnetic resonance imaging contrast application. Nanotechnology, 18(28), pp. 289001-289001. doi:10.1088/0957-4484/18/25/289001

Manuela, G. E., Costa, L. J. L., M. Delerue-Matos, C., & Maria, O. B. A. 1998. Electrochemical oxidation of bentazon at a glassy carbon electrodeApplication to the determination of a commercial herbicide. Talanta, 46(5), pp. 1131-1135. doi:10.1016/s0039-9140(97)00380-9

Nguyen, H. L., Howard, L. E. M., Stinton, G. W., Giblin, S. R., Tanner, B. K., Terry, I., Hughes, A. K., Ross, I. M., Serres, A. & Evans, J. S. O. 2006. Synthesis of Size-Controlled fcc and fct FePt Nanoparticles. Chemistry of Materials, 18(26), pp. 6414-6424. doi:10.1021/cm062127e

Ponder, S. M., Darab, J. G., Bucher, J., Caulder, D., Craig, I., Davis, L., Edelstein, N., Lukens, W., Nitsche, H., Rao, L., Shuh, D. K. & Mallouk, T. E. 2001. Surface Chemistry and Electrochemistry of Supported Zerovalent Iron Nanoparticles in the Remediation of Aqueous Metal Contaminants. Chemistry of Materials, 13(2), pp. 479-486. doi:10.1021/cm000288r

Rahemi, V., Garrido, J. M. P. J., Borges, F., Brett, C. M. A., & Garrido, E. M. P. J. 2013. Electrochemical Determination of the Herbicide Bentazone Using a Carbon Nanotube β-Cyclodextrin Modified Electrode. Electroanalysis, 25, pp. 2360-2366. doi:10.1002/elan.201300230

Rajput, S., Pittman, C. U., & Mohan, D. 2016. Magnetic magnetite (Fe 3 O 4 ) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. Journal of Colloid and Interface Science, 468, pp. 334-346. doi:10.1016/j.jcis.2015.12.008

Rani, S., & Varma, G. D. 2015. Superparamagnetism and metamagnetic transition in Fe3O4 nanoparticles synthesized via co-precipitation method at different pH. Physica B: Condensed Matter, 472, pp. 66-77. doi:10.1016/j.physb.2015.05.016

Saif, S., Tahir, A., & Chen, Y. 2016. Green Synthesis of Iron Nanoparticles and Their Environmental Applications and Implications. Nanomaterials, 6(11), p. 209. doi:10.3390/nano6110209

Sayed, F. N., & Polshettiwar, V. 2015. Facile and Sustainable Synthesis of Shaped Iron Oxide Nanoparticles: Effect of Iron Precursor Salts on the Shapes of Iron Oxides. Scientific Reports, 5(1). doi:10.1038/srep09733

Sodipo, B. K., & Aziz, A. A. 2016. Recent advances in synthesis and surface modification of superparamagnetic iron oxide nanoparticles with silica. Journal of Magnetism and Magnetic Materials, 416, pp. 275-291. doi:10.1016/j.jmmm.2016.05.019

Sun, Y., Li, X., Cao, J., Zhang, W., & Wang, H. P. 2006. Characterization of zero-valent iron nanoparticles. Advances in Colloid and Interface Science, 120(1-3), pp. 47-56. doi:10.1016/j.cis.2006.03.001

Tang, B., Wang, G., Zhuo, L., Ge, J., & Cui, L. 2006. Facile Route to α-FeOOH and α-Fe2O3 Nanorods and Magnetic Property of α-Fe2O3 Nanorods. ChemInform, 37(38). doi:10.1002/chin.200638198

Wu, Q., Zhao, G., Feng, C., Wang, C., & Wang, Z. 2011. Preparation of a graphene-based magnetic nanocomposite for the extraction of carbamate pesticides from environmental water samples. Journal of Chromatography A, 1218(44), pp. 7936-7942. doi:10.1016/j.chroma.2011.09.027

Zanganeh, S., Hutter, G., Spitler, R., Lenkov, O., Mahmoudi, M., Shaw, A., Pajarinen, J. S., Nejadnik, H., Goodman, S., Moseley, M., Coussens, L. M. & Daldrup-Link, H. E. 2016. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nature Nanotechnology, 11(11), pp. 986-994. doi:10.1038/nnano.2016.168

Zhu, H., Jia, Y., Wu, X., & Wang, H. 2009. Removal of arsenic from water by supported nano zero-valent iron on activated carbon. Journal of Hazardous Materials, 172(2-3), pp. 1591-1596. doi:10.1016/j.jhazmat.2009.08.031

Published
2019/02/03
Section
Original Scientific Paper