SYNTHESIS AND STRUCTURE OF COBALT(II) COMPLEX WITH 2,6-DIACETYLPYRIDINE-BIS(PHENYLHYDRAZONE)
Abstract
The molecular and crystal structure of a newly synthesized Co(II) complex with 2,6-diacetylpyridine bis(phenylhydrazone) (L), of the formula [CoL2]I2 are described. The reaction of warm EtOH solutions of the ligand, 2,6-diacetylpyridine bis(phenylhydrazone) and CoI2 in molar ratio 1:1 resulted in formation of black single crystals of the title complex. This is the first and so far, the only metal complex with this ligand that is characterized by single crystal X-ray crystallography. Co(II) is situated in a distorted mer-octahedral surrounding of two tridentate N3 coordinated ligand molecules. Complex crystallizes in monoclinic crystal system in C2/c space group. Besides X-ray analysis, conductometric, spectroscopic and magnetic properties of the complex are investigated.
References
Cremer, D., & Pople, J. A. 1975. General definition of ring puckering coordinates. Journal of the American Chemical Society, 97(6), pp. 1354-1358. doi:10.1021/ja00839a011
Curry, J. D., Robinson, M. A., & Busch, D. H. 1967. Metal complexes derived from substituted hydrazones of 2,6-diacetylpyridine. Inorganic Chemistry, 6(8), pp. 1570-1574. doi:10.1021/ic50054a032
Duax, W. L., Weeks, C. M., & Rohrer, D. C. 1976. Crystal Structures of Steroids. In N. L. Allinger & E. L. Eliel Eds., Topics in Stereochemistry. Hoboken, NJ, USA: Wiley., pp. 271-383. doi:10.1002/9780470147184.ch5
Dumitru, F., Legrand, Y., Barboiu, M., Petit, E., & Lee, A.v. 2009. Metallosupramolecular Architectures of Pseudoterpyridine-Type Ligands and Zn II Metal Ions. Crystal Growth and Design, 9(6), pp. 2917-2921. doi:10.1021/cg9002466
Evans, D. G., & Boeyens, J. C. A. 1989. Conformational analysis of ring pucker. Acta Crystallographica Section B Structural Science, 45(6), pp. 581-590. doi:10.1107/s0108768189008190
Geary, W. J. 1971. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coordination Chemistry Reviews, 7(1), pp. 81-122. doi:10.1016/s0010-8545(00)80009-0
Guimarães, G. D., Rolim, A. L., de Gonsalves, A. A., & Araújo, M. C. R. 2017. Biological Potential of Synthetic Hydrazones in the Last Decade: A Systematic Review. Revista Virtual de Química, 9(6), pp. 2551-2592. doi:10.21577/1984-6835.20170151
Groom, C. R., Bruno, I. J., Lightfoot, M. P., & Ward, S. C. 2016. The Cambridge Structural Database. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, 72(2), pp. 171-179. doi:10.1107/s2052520616003954
Hübschle, C. B., Sheldrick, G. M., & Dittrich, B. 2011. ShelXle: a Qt graphical user interface for SHELXL. Journal of Applied Crystallography, 44(6), pp. 1281-1284. doi:10.1107/s0021889811043202
Kazak, C., Arslan, N. B., Karabulut, S., Azaz, A. D., Namlı, H., & Kurtaran, R. 2009. Supramolecular lead(II) azide complex of 2,6-diacetylpyridine dihydrazone: synthesis, molecular structure, and biological activity. Journal of Coordination Chemistry, 62(18), pp. 2966-2973. doi:10.1080/00958970902980537
Kitaev, Y. P. 1977. Khimiya gidrazonov. Moscow: Nauka.
Kitaev, Y. P., & Buzykin, B. I. 1974. Gidrazony. Moscow: Nauka.
Kogan, V. A., Zelentsov, V. V., Larin, G. M., & Lukov, V. V. 1990. Kompleksy perekhodnykh metallov c gidrazomani. Moscow: Nauka.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., Wood, P. A. 2008. Mercury CSD 2.0: New features for the visualization and investigation of crystal structures. Journal of Applied Crystallography, 41(2), pp. 466-470. doi:10.1107/s0021889807067908
-Rigaku Corporation. 2015. Rigaku Oxford Diffraction; CrysAlisPro Software system. Oxford, UK.
Rollas, S., & Küçükgüzel, S. 2007. Biological Activities of Hydrazone Derivatives. Molecules, 12(8), pp. 1910-1939. doi:10.3390/12081910
Shakdofa, M. M. E., Shtaiwi, M. H., Morsy, N., & Abdel-rassel, T. M. A. 2014. Metal complexes of hydrazones and their biological, analytical and catalytic applications: A review. Main Gr. Chem., 13, 187–218. https://doi.org/10.3233/MGC-140133.
Shee, N. K., Dutta, S., Drew, M. G. B., & Datta, D. 2013. Bis complexes of zinc(II), cadmium(II) and mercury(II) with a potentially pentadentate N-donor ligand. Lewis acidity versus coordination tendency. Inorganica Chimica Acta, 398, pp. 132-135. doi:10.1016/j.ica.2012.12.024
Sheldrick, G. M. 2015a. SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallographica Section A Foundations and Advances, 71(1), pp. 3-8. doi:10.1107/s2053273314026370
Sheldrick, G. M. 2015b. Crystal structure refinement with SHELXL. Acta Crystallographica Section C Structural Chemistry, 71(1), pp. 3-8. doi:10.1107/s2053229614024218
Spek, A. L. 2009. Structure validation in chemical crystallography. Acta Crystallographica Section D Biological Crystallography, 65(2), pp. 148-155. doi:10.1107/s090744490804362x
Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D., & Spackman, M. A. 2017. CrystalExplorer.University of Western Australia. 17.
Watanabe, K., Mino, T., Yoshida, Y., & Sakamoto, M. 2018. Hydrazone-Palladium Catalyzed Reactions Using Allyl Compounds. Journal of Synthetic Organic Chemistry, Japan, 76(8), pp. 828-837. doi:10.5059/yukigoseikyokaishi.76.828
Yang, Y., Gao, C., Liu, J., & Dong, D. 2016. Recent developments in rhodamine salicylidene hydrazone chemosensors. Analytical Methods, 8(14), pp. 2863-2871. doi:10.1039/c6ay00135a
Zabrodsky, H., Peleg, S., & Avnir, D. 1992. Continuous symmetry measures. Journal of the American Chemical Society, 114(20), pp. 7843-7851. doi:10.1021/ja00046a033
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.