ANALYSIS OF SHANNON CAPACITY FOR SC AND MRC DIVERSITY SYSTEMS IN α-κ-μ FADING CHANNEL

  • Milan Savić Faculty of Natural Sciences and Mathematics, University of Priština, Kosovska Mitrovica
  • Marko Smilić Faculty of Natural Sciences and Mathematics, University of Priština, Kosovska Mitrovica
  • Branimir Jakšić Faculty of Technical Sciences, University of Priština, Kosovska Mitrovica
Keywords: α-κ-μ distribution, Selection Combiner (SC), Maximal Ratio Combiner (MRC), Shannon capacity, Diversity system,

Abstract


In this paper, the analysis of Shannon capacity for selection combining (SC) and maximal ratio combining (MRC) diversity systems in the generalized α-κ-μ fading channel is presented. Closed-form expressions for probability density function (PDF) at the output of SC and MRC diversity systems are given. Also, closed-form expressions for Shannon capacity for cases of SC diversity with independent and identically distributed branches, MRC diversity with independent and identically distributed branches and for case of no diversity are derived. The obtained results are numerically calculated and graphically presented for different combinations of fading parameters α, κ and μ.

References

Aldalgamouni, T., Magableh, A. M., & Al-Hubaishi, A. 2013. Performance of selected diversity techniques over the alfa-mi fading channels. WSEAS Transactions on Communications, 12(2), pp. 41–51.

Bessate, A., & El, B. F. 2017. A tight approximate analytical framework for performance analysis of equal gain combining receiver over independent Weibull fading channels. EURASIP Journal on Wireless Communications and Networking, 2017(1). doi:10.1186/s13638-016-0790-2

Dixit, D., & Sahu, P. R. 2012. Performance of L-Branch MRC Receiver in η-μ and κ-μ Fading Channels for QAM Signals. IEEE Wireless Communications Letters, 1(4), pp. 316-319. doi:10.1109/wcl.2012.042512.120240

Freeman, R. L. 2005. Fundamentals of Telecommunications. Hoboken, NJ, USA: Wiley. doi:10.1002/0471720941

Gradshteyn, I., & Ryzhik, I. 2000. Table of Integrals, Series, and Products.San Diego: Academic Press. 5th edn.

Huang, H., & Yuan, C. 2018. Cooperative spectrum sensing over generalized fading channels based on energy detection. China Communications, 15(5), pp. 128-137. doi:10.1109/cc.2018.8387992

Ibnkahla, M. 2005. Signal Processing for Mobile Communications Handbook. 872.

Katiyar, H. 2015. Performance Analysis of Space Diversity in Alfa-Mi Fading Channel. International Jouranl of Electrical and Electronics Engineers, 7(2), pp. 38-46.

Milišić, M., Hamza, M., & Hadžialić, M. 2009. BEP/SEP and Outage Performance Analysis of -Branch Maximal-Ratio Combiner for Fading. International Journal of Digital Multimedia Broadcasting, , pp. 1-8. doi:10.1155/2009/573404

Mitrović, Z. J., Nikolić, B. Z., Đorđević, G. T., & Stefanović, M. Č. 2009. Influence of Imperfect Carrier Signal Recovery on Performance of SC Receiver of BPSK Signals Transmitted over alfa-mi Fading Channel. Electronics, 13(1), pp. 58-62.

Mohamed, R., Ismail, M. H., Newagy, F., & Mourad, H. M. 2013. Closed-form Capacity Expressions for the α-μ Fading Channel with SC Diversity under Different Adaptive Transmission Strategies. Frequenz, 67(3-4). doi:10.1515/freq-2012-0708

Panić, S., Stefanović, M., Anastasov, J., Spalević, P. 2013. Fading and interference mitigation in wireless communications. New York: CRC Press.

Prudnikov, A., & Brychkov, J. 2003. Integrals and series.Moscow: Fizmatlit. 2nd edn.

Sagias, N. C., Mathiopoulos, P. T., & Tombras, G. S. 2003. Selection diversity receivers in Weibull fading: outage probability and average signal-to-noise ratio. Electronics Letters, 39(25), p. 1859. doi:10.1049/el:20031189

Simon, M. K., & Alouini, M. 2005. Digital Communication over Fading Channels. Hoboken, NJ, USA: Wiley. doi:10.1002/0471715220

Simon, M. K., & Alouini, M. 2005. Capacity of Fading Channels. In Digital Communication over Fading Channels. Hoboken, NJ, USA: Wiley., pp. 863-881. doi:10.1002/0471715220.ch15

Stüber, G. L. 2002. Principles of mobile communication. Kluwer Academic Publishers. 2nd edn., 752.

Subadar, R., & Das, P. 2017. Performance of L-SC receiver over K-fading channels. In 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT).Institute of Electrical and Electronics Engineers (IEEE)., pp. 1-4. doi:10.1109/icccnt.2017.8203908

Subadar, R., Reddy, T. S. B., & Sahu, P. R. 2010. Performance of an L-SC Receiver over kappa-mu and eta-mu Fading Channels. In 2010 IEEE International Conference on Communications.Institute of Electrical and Electronics Engineers (IEEE)., pp. 1-5. doi:10.1109/icc.2010.5502444

Subadar, R., & Sahu, P. R. 2010. Performance of L-MRC receiver over independent Hoyt fading channels. In 2010 National Conference On Communications (NCC).Institute of Electrical and Electronics Engineers (IEEE)., pp. 1-5. doi:10.1109/ncc.2010.5430232

Singh, S., & Singh, N. 2012. Big Data analytics. In 2012 International Conference on Communication, Information and Computing Technology (ICCICT).Institute of Electrical and Electronics Engineers (IEEE)., pp. 1-4. doi:10.1109/iccict.2012.6398180

Talha, B., Primak, S., & Patzold, M. 2010. On the Statistical Properties of Equal Gain Combining over Mobile-to-Mobile Fading Channels in Cooperative Networks. In 2010 IEEE International Conference on Communications.Institute of Electrical and Electronics Engineers (IEEE)., pp. 1-6. doi:10.1109/icc.2010.5501898

Yilmaz, F., & Alouini, M. 2012. A Novel Unified Expression for the Capacity and Bit Error Probability of Wireless Communication Systems over Generalized Fading Channels. IEEE Transactions on Communications, 60(7), pp. 1862-1876. doi:10.1109/tcomm.2012.062512.110846

Supplementary files
Published
2018/12/16
Section
Original Scientific Paper